

AP Calculus AB J.S. Morton HS District 201 2023-2024

Teacher: Ms. Kane/Mr. Gierut Phone : 708-780-4000 Email: bkane@jsmorton.org pgierut@jsmorton.org Classroom: Room 351/Room 301 Web: www.mathkanection.com

COURSE DESCRIPTION

In this course, students will develop an understanding of Calculus concepts such as limits, derivatives, integration, area, and volume and explore practical applications using technology. The goal of this course is to successfully prepare students take the Calculus AP exam.

What will students learn in this course?

Key Concept	Standards (Students will)						
	SEMESTER 1						
. .:	Find the limits of functions graphically, numerically, and analytically						
Functions, Graphs and	Understand the continuity of a function						
Limits	Discuss one-sided limits						
	Use limits to find limits at infinity and infinite limits						
	Use and apply the definition of the derivative						
	Understand basic rules of differentiation, including trig functions.						
Differentiation	Apply the product and quotient rules to differentiate functions.						
	Make connections between position, velocity, and acceleration						
	Understand the difference between instantaneous and average rate of change.						
Differentiation	Apply the chain rule to differentiate functions.						
Continued	Understand basic rules of differentiation, including exponential and logarithmic functions.						
continucu	Apply rules of differentiation to implicit equations.						
	Understand the Extreme and Mean Value Theorems						
	Determine extrema and increasing/decreasing behavior of a function						
Anniliantiana af	Use the 2 nd derivative test to determine extrema						
Applications of	Use the 2 nd derivative to determine concavity						
Derivatives	Solve optimization problems						
	Calculate linear approximations						
	Solve related rate problems						

SEMESTER 2					
	Calculate areas using the rectangular approximation methods.				
	Use Riemann Sums with uneven subintervals.				
	Use the definite integral as a limit of Riemann Sums.				
	Use technology to calculate the definite integral.				
Definite Integrals	Understand the Mean Value Theorem for Integrals and Average Value Theorem				
	Understand basic rules of antidifferentiation, including trig, logarithmic, and exponential functions				
	Apply the technique of substitution to antidifferentiate functions				
	Use the Fundamental Theorem of Calculus to find the derivative of an integral				
	Use the definite integral as a limit of Trapezoid Sums				

Differential	Construct and analyze slope fields
Equations &	Solve separable differential equations
Mathematical	Apply differential equations to real-life problems
Modeling	Evaluate limits of the indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$ using L'Hôpital's Rule
	Determine the area between curves and the area enclosed by intersecting curves with respect to x
Applications of	Determine the area between curves and the area enclosed by intersecting curves with respect to y
Definite Integrals	Calculate the volume of a solid using Disk and Washer Method
	Calculate the volume of a solid using Cross Sections

How will we know students have learned it?

Grade	A – Advanced/ Exemplary	B – Proficient C		Basic	D – Needs Improvement	E – Not Passing	I – Inc	omplete
Scale	4.0-5.0	3.0-3.9	2.0	-2.9	1.0-1.9	0.1-0.9	R	edo
	Seme	ester 1			S	Semester 2		
	Functions, Graphs, and Limits		15%	Definite Integrals				20%
Unit	Differentiation		20%	Differential Equations & Mathematical Modeling			20%	
Weights	Differentiation Continued		20%	Applications of Definite Integrals			20%	
	Applications of Deriva	tives	25%	AP Exam Review			20%	
	AP Calculus Practice Exam		20%	AP Calculus Exam				20%

Within each unit, assignments will be graded according to the following weights:

Assignment Categories	Common unit Assessments (Comprehensive unit exams; 1 per unit)	60%
	Interim Classroom Assessments (Quizzes, projects; 2-3 per unit)	30%
	Formative Assignments (Homework, In-class assignments, etc.; varies)	10%

Formative assignments are 10% in each unit because students should not be unduly penalized for mistakes during the learning process. The grade is primarily based on mastery of standards, and mastery is demonstrated on assessments.

	What must every student pass to earn credit on this course? All students must pass each unit with a 1.0.
	What must every student complete to earn credit in the course?
Course	Every student must take the practice AP Exam at the end of semester 1.
Course	Every student must take the AP Calculus Exam in May.
Requirements	What other requirements must every student meet?
	Every student must meet weekly with their study groups.
	Every student must either: participate in Mathletes, perform peer tutoring or receive tutoring
	from teacher.

Students who do not meet these requirements will receive an "I" (incomplete) for the semester. If requirements are not met within three weeks after the semester, the student will earn a grade of E.

The College Board has instituted a new \$40 unused student exam fee. This fee will be applied to a student's District 201 financial account balance when:

- o A student drops an AP Class after November 15^{th}
- o A student does not take an exam(s) during the identified testing period (May $6^{th} 17^{th}$) or late testing period (May $22^{th} 24^{th}$)
- o Please note that the \$40 unused student exam fee is per class.

Homework Rubric

0	1	2	3	4	5
more than 2	2 homework	1 homework	all homework	all homework	all homework
homework	assignments	assignment	assignments	assignments	assignments
assignments	missing or	missing or	for the Unit	accurately	accurately
missing or	incomplete for	incomplete for	completed	completed for	completed
incomplete for	the Unit	the Unit		the Unit	with proper
the Unit					notation for
					the Unit

Missing/Incomplete Assignment - student did not complete all problems for discussion that day

Participation in weekly Study Groups are part of the Homework grade. Failure to complete a study group for a week will result in 0.5 deduction from the Homework grade.

Study Groups: U and US in Calculus

Doing well in Calculus is a team effort; there is both you and us in Calculus. You will meet once each week with a study group until the AP Exam in May. Each week ends on Fridays at 2:05pm (end of 5th hour). You may meet for a minimum of either one hour before/after school or for 2 half-hours during supervision. You can always choose to meet for more time.

The total number of students in your study group should be 3 to 5, including you. Meeting in your study group will count as a homework assignment. Group members must be of the same course (all AB or all BC), but AB groups can invite BC students to visit their group to give extra help. BC students are encouraged to find out if AB groups need help.

You do not have to meet with the same students each week. Your goal should be to find a group that fits right.

Each time you meet, you will need to fill out the study group form found at <u>https://forms.gle/TLaPe3njD7HkUafG7</u> or at <u>www.mathkanection.com</u> on the AP Calculus AB or BC home page. You must log your study group session when your study group meets. End your study group session 5 minutes early to fill out the study group form. *Late submissions will NOT be accepted.*

Assessment Rubric

Each question on a test or quiz will be given a value from 0-5

0	1	2	3	4	5
No work or no	Major error in	Minor error in	Computation	Error in	Proper
relevant Calculus work	relevant Calculus work	relevant Calculus work	error	notation	notation used throughout problem

Summer Work Rubric

	5	4	3	2	1	0
Part I	Completed all	Not completed on-				
	topics on-time	time OR missing				
	with 100%	with 86-99%	with 75-85%	with 61-74%	with 50-60%	topics OR less than
	success on topics	50% success on				
						topics
Part II	Completed all	Not completed on-				
	topics on-time	time OR missing				
	with 100%	with 86-99%	with 75-85%	with 61-74%	with 50-60%	topics OR less than
	success on topics	50% success on				
						topics
Part III	Completed all	Not completed on-				
	topics on-time	time OR missing				
	with 100%	with 86-99%	with 75-85%	with 61-74%	with 50-60%	topics OR less than
	success on topics	50% success on				
						topics
Activity	Attended	Attended	Attended	Attended	Attended	Did not attend
Day	Activity Day OR less					
	with a 100%	with a 86-99%	with a 75-85%	with a 61-74%	with a 50-60%	than 50% success on
	success on	activities				
	activities	activities	activities	activities	activities	

What will we do when students aren't learning?

Extra Help

Students who are not passing the course are expected to seek extra help. Further, any student who wants to improve his or his or her performance and grade is encouraged to ask for support, as well. AP review sessions will be available second semester.

- * For Ms. Kane, Room 351 at 7am-8:40am (8:40am-9:28am on late start days) & 3:10pm-5pm (except for Mathletes' meeting days)
- * For Mr. Gierut, Room 301 at 7:45am-8:40am (8:40am-9:28am on late start days) & 3:10pm-3:30pm

* ADDITIONAL RESOURCES

In addition to Ms. Kane's, Mr. Gierut's and your classmates' help, the following are a sample of websites that you should utilize to help you understand Calculus.

<u>www.mathkanection.com</u> – Ms. Kane's website <u>hs.saplinglearning.com/ibiscms/login/</u> -- Online textbook <u>www.khanacademy.org</u> – no login needed, just scroll down & click on Calculus <u>www.patrickjmt.com</u> – helpful math videos <u>www.wolframalpha.com</u> – help for solving problems <u>https://myap.collegeboard.org/</u> -- AP Classroom

Calculus Re-do Policy

Students are eligible and **expected** to re-do tests that do not meet or exceed standards. Students will be provided one opportunity for re-do on a given item.

Students must request a re-do after receiving the graded assignment. The requirements that must be met prior to re-do:

- All Questions on Original Test must have been attempted (no problems left blank).
- Student must have accurately completed all homework assignments for the Unit.
- Students must attend weekly study group sessions for the Unit.
- Student must have completed all Quizzes in a timely manner. (if absent on day of a Quiz, the student must have taken the Quiz on the day he/she returned to school)
- Student must schedule and attend a help session at least one day before the redo to study for the re-do.
- Re-dos will be taken at specified time, one week after the original assessment was returned.

The maximum grade earned shall be full credit, given the original item is submitted on time with full effort.

District Re-Do Policy:

J. Sterling Morton High School District 201 holds high standards for student achievement. To maintain high expectations and provide support for all students to meet them, the district enforces a redo policy for student work that does not meet or exceed standards.

Students are eligible and expected to redo required assignments that do not have a score above 1.0. Formative and Interim assignments not considered required may be eligible for redo only at the teacher's discretion.

If not already required by the teacher, students must request a redo within one week after receiving the graded assignment from the teacher. The teacher will communicate to the student any requirements that must be met prior to the redo (i.e. after-school tutoring, extra practice assignments, etc.), as well as the deadline for submission. Redo deadlines are described below.

In cases other than common assessments, teachers may provide an alternative assignment for students to demonstrate mastery of the standards.

- A redo for a required assignment can be completed until the last day of the month following the month of its due date. It will not be accepted after this date (Refer to chart).
- If a required assignment is not redone, the original score of the assignment will be given.
- If a required assignment is not attempted by the redo deadline, the score will be "I" for the assignment and the semester.

Note: If a required assignment is due during the month of November/April the Redo window closes the last full day of school ahead of Final Exams. If a required assignment is due during the final month of the semester the redo window closes the last day of Incomplete Lab.

Redo Window Example: Teacher A communicates to their class the due date for a required assignment is September 26, 2023. Once the required assignment is collected/given, a student eligible for a Redo has until October 31, 2023 to complete the Redo.

Redo	Dead	lines:
neuu	Deau	mes.

Month Assigned	Close Date
August/September	October 31 st
October	November 30 th
November	December 22 nd
December	January 13 th (incomplete lab)
January	February 28 th
February	March 31 st
March	April 30 th
April	May 24 th
Мау	June 16 th (Incomplete lab)

What will we do when students have already learned it?

Students who master the standards before the end of the unit will be offered enrichment assignments or projects to extend their learning. Students who decline are expected to complete required unit assignments and assessments.

Procedures

- Students are expected to inquire about missed learning/assignments immediately upon return from an absence.
- Daily participation is expected.
- Field Trips are a reward for reaching educational expectations. Earning an A,B, or C in an Honors Course is expected; AP Calculus AB is an honors course. Therefore, students who are not earning an A,B, or C will not be approved to go on Field Trips.
- Parents and students are strongly encouraged to use Skyward Family Access to be informed on students' progress.
- Parent Liaison Contact Information: Mr. Joshua Galvan 708-780-4000 ext. 2009 or <u>JoshuaGalvan@jsmorton.org</u>
- Students are expected to have the following materials:
 - Textbook: Calculus for the AP Course: Sullivan & Miranda <u>hs.saplinglearning.com/ibiscms/login/</u>
 - Binder: for notes, homework, quizzes, tests
 - Pencils & Erasers
 - Graphing Calculator (TI-Nspire CX or TI-Nspire CAS)

CLASS EXPECTATION

Learn as best as you can every minute of every day and encourage others to do the same.

Calculus AB Functions, Graphs, and Limits

Standard	5	4	3	2	1	0
Find the limits of functions graphically, numerically, and analytically	Student can find limits accurately and justify with perfect notation.	Student can find limits accurately and justify.	Student can find limits accurately.	Student can find limits using all 3 methods.	Student can find the limit in 2 of the 3 methods.	Student makes no attempt or limited attempt to find a limit.
Understand the continuity of a function	With perfect notation, student finds left- handed limit, right- handed limit, and function value all with accuracy and justification.	Student finds left- handed limit, right- handed limit, and function value all with accuracy and justification.	Student finds left- handed and right- handed limits and function value accurately.	Student finds left- handed and right- handed limits and function value.	Student finds left- handed limit, right- handed limits or function value.	
Discuss one-sided limits	Student can find limits accurately and justify with perfect notation.	Student can find limits accurately and justify.	Student can find limits accurately.	Student can find limits using all 3 methods.	Student can find the limit in 2 of the 3 methods.	Student makes no attempt or limited attempt to find a limit.
Use limits to find limits at infinity and infinite limits	Student can find limits accurately and justify with perfect notation.	Student can find limits accurately and justify.	Student can find limits accurately.	Student can find limits using all 3 methods.	Student can find the limit in 2 of the 3 methods.	Student makes no attempt or limited attempt to find a limit.

Calculus AB Differentiation

Standard	5	4	3	2	1	0
Use and apply the definition of the derivative	Student can find the derivative using the definition of the derivative accurately and justify with perfect notation.	Student can find the derivative using the definition of the derivative accurately and justify.	Student can find the derivative using the definition of the derivative accurately.	Student can find the derivative using the definition of the derivative.	Student can use the definition of the derivative.	Student makes no attempt or limited attempt to find the derivative using the definition of derivative.
Understand basic rules of differentiation, including trig functions	Student can find the derivative using the basic rules of differentiation, including trig functions accurately and justify with perfect notation.	Student can find the derivative using the basic rules of differentiation, including trig functions accurately and justify.	Student can find the derivative using the basic rules of differentiation, including trig functions accurately.	Student can find the derivative using the basic rules of differentiation, including trig functions.	Student can use the basic rules of differentiation, including trig functions.	Student makes no attempt or limited attempt to find the derivative using basic rules of differentiation, including trig functions.
Apply the product, and quotient rules to differentiate functions.	Student can apply the product and quotient rules to differentiate functions accurately and justify with perfect notation.	Student can apply the product and quotient rules to differentiate functions accurately and justify.	Student can apply the product and quotient rules to differentiate functions accurately.	Student can apply the product and quotient rules to differentiate functions.	Student can apply the product and quotient rules to differentiate functions.	Student makes no attempt or limited attempt to apply the product and quotient rules to differentiate functions.
Make connections between position, velocity, and acceleration	Student can make connections between position, velocity, and acceleration accurately and justify with perfect notation.	Student can make connections between position, velocity, and acceleration accurately and justify.	Student can make connections between position, velocity, and acceleration accurately.	Student can make connections between position, velocity, and acceleration.	Student can make connections between two of the following: position, velocity, and acceleration.	Student makes no attempt or limited attempt to connect position, velocity, and acceleration.
Understand the difference between instantaneous and average rate of change.	Student can understand the difference between instantaneous and average rate of change accurately and justify with perfect notation.	Student can understand the difference between instantaneous and average rate of change accurately and justify.	Student can understand the difference between instantaneous and average rate of change accurately.	Student can understand the difference between instantaneous and average rate of change.	Student can find instantaneous rate of change and average rate of change.	Student makes no attempt or limited attempt to understand the difference between instantaneous and average rate of change.

Calculus AB Differentiation Continued

Standard	5	4	3	2	1	0
Understand basic rules of differentiation, including logarithmic, and exponential	Student can find the derivative using the	Student can find the derivative using the	Student can find the derivative using the	Student can find the derivative using the	Student can use the basic rules of	Student makes no attempt or limited
	differentiation, including logarithmic, and exponential functions accurately and justify	differentiation, including logarithmic, and exponential functions accurately and justify.	differentiation, including logarithmic, and exponential functions accurately.	differentiation, including logarithmic, and exponential functions.	including logarithmic, or exponential functions.	derivative using basic rules of differentiation, including logarithmic, and exponential
Apply the chain rule to differentiate functions.	Student can apply the chain rule to differentiate functions accurately and justify with perfect notation.	Student can apply the chain rule to differentiate functions accurately and justify.	Student can apply the chain rule to differentiate functions accurately.	Student can apply the chain rule to differentiate functions.	Student can apply the chain rule to differentiate functions.	Student makes no attempt or limited attempt to apply the chain rule to differentiate functions.
Apply rules of differentiation to implicit equations.	Student can apply rules of differentiation to implicit equations, including the product, quotient, and chain rules accurately and justify with perfect notation.	Student can apply rules of differentiation to implicit equations, including the product, quotient, and chain rules accurately and justify.	Student can apply rules of differentiation to implicit equations, including the product, quotient, and chain rules accurately.	Student can apply rules of differentiation to implicit equations, including the product, quotient, and chain rules.	Student can apply rules of differentiation to implicit equations.	Student makes no attempt or limited attempt to apply rules of differentiation to implicit equations.

Calculus AB Applications of Derivatives

Standard	5	4	3	2	1	0
Understand the Extreme and Mean Value Theorems	Student uses correct notation, function values and perfect justification for both theorems.	Student uses correct function values and perfect justification for both theorems.	Student uses correct function values and justifies for both theorems.	Student can use the Extreme and Mean Value Theorems.	Student can use the Extreme or Mean Value Theorem.	Student attempts to use non-Calculus methods or no attempt.
Determine extrema and increasing/decreasi ng behavior of a function	Student perfectly identifies critical points to determine extrema and intervals of increasing/decreasing with correct notation.	Student uses critical points to determine extrema and intervals of increasing/decreasing with notation.	Student uses critical points to determine extrema and intervals of increasing/decreasing.	Student uses critical points to determine extrema or intervals of increasing/decreasing.	Student can find critical points and determine intervals.	Student attempts to use non-Calculus methods or no attempt.
Use the 2 nd derivative test to determine extrema	Student can find limits accurately and justify with perfect notation.	Student can find limits accurately and justify.	Student can find limits accurately.	Student can find limits using all 3 methods.	Student can find the limit in 2 of the 3 methods.	Student makes no attempt or limited attempt to find a limit.
Use the 2 nd derivative to determine concavity	Student can find limits accurately and justify with perfect notation.	Student can find limits accurately and justify.	Student can find limits accurately.	Student can find limits using all 3 methods.	Student can find the limit in 2 of the 3 methods.	Student makes no attempt or limited attempt to find a limit.
Solve optimization problems	Student accurately solves using the derivative with perfect explanation and units.	Student accurately solves using the derivative with perfect explanation.	Student accurately solves using the derivative.	Student finds the derivative accurately to attempt to solve.	Student finds the derivative to attempt to solve.	Student attempts to use non-Calculus methods or no attempt.
Calculate linear approximations	Student accurately calculates the equation of the tangent line and uses it to approximate with perfect notation and justification.	Student accurately calculates the equation of the tangent line and uses it to approximate with justification.	Student accurately calculates the equation of the tangent line and uses it to approximate.	Student accurately calculates the equation of the tangent line.	Student calculates the equation of the tangent line.	Student makes no or limited attempt.
Solve related rate problems	Student accurately solves using the derivative with perfect explanation and units.	Student accurately solves using the derivative with perfect explanation.	Student accurately solves using the derivative.	Student finds the derivative accurately to attempt to solve.	Student finds the derivative to attempt to solve.	Student attempts to use non-Calculus methods or no attempt.

Calculus AB Definite Integrals

Standard	5	4	3	2	1	0
Calculate areas using the rectangular approximation methods.	Student can calculate areas using the left, right, and midpoint rectangular approximation methods accurately and justify	Student can calculate areas using the left, right, and midpoint rectangular approximation methods accurately and justify.	Student can calculate areas using the left, right, and midpoint rectangular approximation methods accurately.	Student can calculate areas using the left, right, and midpoint rectangular approximation.	Student can calculate areas using the left and right rectangular approximation methods.	Student makes no attempt or limited attempt to calculate areas using the rectangular approximation
Use Riemann Sums with uneven subintervals.	Student can use left, right, and midpoint Riemann Sums with uneven subintervals accurately and justify with accurate notation.	Student can use left, right, and midpoint Riemann Sums with uneven subintervals accurately and justify.	Student can use left, right, and midpoint Riemann Sums with uneven subintervals accurately.	Student can use left, right, and midpoint Riemann Sums with uneven subintervals.	Student can use left and right Riemann Sums with uneven subintervals.	Student makes no attempt or limited attempt to use left and right Riemann Sums with uneven subintervals.
Use the definite integral as a limit of Riemann Sums.	Student can write and evaluate the definite integral as a limit of Riemann Sums accurately and justify with accurate notation.	Student can write and evaluate the definite integral as a limit of Riemann Sums accurately and justify.	Student can write and evaluate the definite integral as a limit of Riemann Sums accurately.	Student can write accurately and evaluate the definite integral as a limit of Riemann Sums.	Student can write and evaluate the definite integral as a limit of Riemann Sums.	Student makes no attempt or limited attempt to write and evaluate the definite integral as a limit of Riemann Sums.
Use technology to calculate the definite integral.	Student can use technology to calculate the definite integral, including trig functions, accurately and justify with accurate notation.	Student can use technology to calculate the definite integral, including trig functions, accurately and justify.	Student can use technology to calculate the definite integral, including trig functions, accurately.	Student can use technology to calculate the definite integral, including trig functions.	Student can use technology to calculate the definite integral.	Student makes no attempt or limited attempt to use technology to calculate the definite integral.

Calculus AB Definite Integrals

Standard	5	4	3	2	1	0
Understand the Mean Value Theorem for Integrals and Average Value Theorem	Student uses correct notation, function values and perfect justification for both theorems.	Student uses correct function values and perfect justification for both theorems.	Student uses correct function values and justifies for both theorems.	Student can use the Mean Value Theorem for Integrals and the Average Value Theorem.	Student can use the Mean Value Theorem for Integrals or the Average Value Theorem.	Student attempts to use non-Calculus methods or no attempt.
Understand basic rules of antidifferentiation, including trig, logarithmic, and exponential functions	Student can find the antiderivative using the basic rules of antidifferentiation, including trig, logarithmic, and exponential functions accurately and justify with perfect notation.	Student can find the antiderivative using the basic rules of antidifferentiation, including trig, logarithmic, and exponential functions accurately and justify.	Student can find the antiderivative using the basic rules of antidifferentiation, including trig, logarithmic, and exponential functions accurately.	Student can find the antiderivative using the basic rules of antidifferentiation, including trig, logarithmic, and exponential functions.	Student can use the basic rules of antidifferentiation, including trig, logarithmic, or exponential functions.	Student makes no attempt or limited attempt to find the antiderivative using basic rules of antidifferentiation, including trig, logarithmic, and exponential functions.
Apply the technique of substitution to antidifferentiate functions	Student can apply the technique of substitution to antidifferentiate functions accurately and justify with perfect notation.	Student can apply the technique of substitution to antidifferentiate functions accurately and justify.	Student can apply the technique of substitution to antidifferentiate functions accurately.	Student can apply the correct substitution and the technique of substitution to antidifferentiate functions.	Student can recognize the correct substitution needed to antidifferentiate functions.	Student makes no attempt or limited attempt to apply the product, quotient, or chain rules to differentiate functions.
Use the Fundamental Theorem of Calculus to find the derivative of an integral	Students uses the Fundamental Theorem of Calculus to find the derivative of an integral accurately and justify with perfect notation.	Students uses the Fundamental Theorem of Calculus to find the derivative of an integral accurately and justify.	Students uses the Fundamental Theorem of Calculus to find the derivative of an integral accurately.	Students can recognize that the derivative of an integral are inverse operations and uses the Fundamental Theorem of Calculus to find the derivative of an integral	Students can recognize that the derivative of an integral are inverse operations.	Students makes no attempt or limited attempt to use the Fundamental Theorem of Calculus to find the derivative of an integral
Use the definite integral as a limit of Trapezoid Sums	Student can use the definite integral as a limit of Trapezoid Sums accurately and justify with accurate notation.	Student can use the definite integral as a limit of Trapezoid Sums accurately and justify.	Student can use the definite integral as a limit of Trapezoid Sums accurately.	Student can use the definite integral as a limit of Trapezoid Sums.	Student can recognize the definite integral as a limit of Trapezoid Sums	Student makes no attempt or limited attempt to use the definite integral as a limit of Trapezoid Sums

Calculus AB Differential Equations & Mathematical Modeling

Standard	5	4	3	2	1	0
Construct and analyze slope fields	Student can construct and analyze slope fields accurately and justify with accurate notation.	Student can construct and analyze slope fields accurately and justify.	Student can construct and analyze slope fields accurately.	Student can construct and analyze slope fields.	Student can construct or analyze slope fields	Student can construct and analyze slope fields accurately.
Solve separable differential equations	Student can solve separable differential equations accurately and justify with accurate notation.	Student can solve separable differential equations accurately and justify.	Student can solve separable differential equations accurately.	Student can separate and antiderive a separable differential equation.	Student can separate a separable differential equation.	Student makes no attempt or limited attempt to separate a separable differential equation
Apply differential equations to real- life problems	Student can apply differential equations to real-life problems accurately and justify with accurate notation.	Student can apply differential equations to real-life problems accurately and justify.	Student can apply differential equations to real-life problems accurately.	Student can separate and antiderive a separable differential equation in a real-life problem.	Student can separate a separable differential equation in a real-life problem.	Student makes no attempt or limited attempt to apply differential equations to real-life problems accurately.
Evaluate limits of the indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$ using L'Hôpital's Rule	Student can evaluate limits of the indeterminate forms $\frac{\theta}{\sigma}$ and $\frac{\infty}{\omega}$ using L'Hôpital's Rule and justify with accurate notation.	Student can evaluate limits of the indeterminate forms $\frac{o}{o}$ and $\frac{\infty}{\infty}$ using L'Hôpital's Rule accurately and justify.	Student can evaluate limits of the indeterminate forms $\frac{o}{o}$ and $\frac{\infty}{\infty}$ using L'Hôpital's Rule accurately.	Student can evaluate limits of the indeterminate forms $\frac{\theta}{\sigma}$ and $\frac{\infty}{\omega}$ using L'Hôpital's Rule.	Student can identify limits of the indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$	Student makes no attempt or limited attempt to evaluate limits of the indeterminate forms $\frac{\rho}{o}$ and $\frac{\infty}{\infty}$ using L'Hôpital's Rule

Calculus AB Applications of Definite Integrals

Standard	5	4	3	2	1	0
	Student can determine	Student can determine	Student can determine	Student can determine	Student can recognize	Student makes no
Determine the area	the area between curves	the area between curves	the area between	the area between curves	the area between	attempt or limited
between curves	and the area enclosed	and the area enclosed	curves and the area	and the area enclosed	curves and the area	attempt to determine
and the area	by intersecting curves	by intersecting curves	enclosed by	by intersecting curves	enclosed by	the area between
enclosed by	with respect to x	with respect to x	intersecting curves with	with respect to x.	intersecting curves	curves and the area
intersecting curves	accurately and justify	accurately and justify.	respect to x accurately.		with respect to x.	enclosed by
with respect to x	with accurate notation.					intersecting curves
						with respect to x.
	Student can determine	Student can determine	Student can determine	Student can determine	Student can recognize	Student makes no
Determine the area	the area between curves	the area between curves	the area between	the area between curves	the area between	attempt or limited
between curves	and the area enclosed	and the area enclosed	curves and the area	and the area enclosed	curves and the area	attempt to determine
and the area	by intersecting curves	by intersecting curves	enclosed by	by intersecting curves	enclosed by	the area between
enclosed by	with respect to y	with respect to y	intersecting curves with	with respect to y.	intersecting curves	curves and the area
intersecting curves	accurately and justify	accurately and justify.	respect to y accurately.		with respect to y.	enclosed by
with respect to y	with accurate notation.					intersecting curves
. ,						with respect to y.
	Student can calculate	Student can calculate	Student can calculate	Student can calculate	Student can calculate	Student makes no
Calculate the	the volume of a solid	the volume of a solid	the volume of a solid	the volume of a solid	the volume of a solid	attempt or limited
volume of a solid	using Disk and Washer	using Disk and Washer	using Disk and Washer	using Disk and Washer	using Disk or Washer	attempt to calculate
using Disk and	Methods accurately and	Methods accurately and	Methods accurately.	Methods.	Methods.	the volume of a solid
Washer Method	justify with accurate	justify.				using Disk or Washer
	notation.					Methods
Calculate the	Student can calculate	Student can calculate	Student can calculate	Student can calculate	Student can recognize	Student makes no
volume of a solid	the volume of a solid	the volume of a solid	the volume of a solid	the volume of a solid	the volume of a solid	attempt or limited
using Cross	using Cross Sections	using Cross Sections	using Cross Sections	using Cross Sections.	using Cross Sections	attempt to calculate
Contions	accurately and justify	accurately and justify.	accurately.			the volume of a solid
Sections	with accurate notation.					using Cross Sections.