U and US in Calculus 2017 AP Annual Conference

Barbara Kane & Patrick Gierut AP Calculus Teachers J. Sterling Morton East High School

Emails: bkane@jsmorton.org pgierut@jsmorton.org

Website: www.mathkanection.com

Question 5

Score	Qualifications
0	No work or no anti-differentiation or <i>u</i> -substitution not used
1	Error in choosing u or du/dx . No u #'s found.
2	Error in substitution or simplifying.
3	Error in FTC
	OR computation error.
4	Error in notation.
5	Proper notation used throughout problem.

Question 2

Score	Qualifications
0	No work or understanding about both the sign of $v(t)$ and $a(t)$
	(referencing only $v(t)$ or $a(t)$)
1	Recognizes need to use $a(t)$ and $v(t)$, but writes wrong information about $a(t)$
	and $v(t)$ at correct t-value
2	Recognizes need to use $a(t)$ and $v(t)$, writes correct information about $a(t)$ or
	v(t), but writes incorrect conclusion
	OR no <i>t</i> -value referenced at all
	OR only says $a(t) \& v(t)$ have opposite/same signs.
3	Writes correct information about $a(t)$ or $v(t)$ and correct conclusion.
4	Error in notation.
5	Proper notation used throughout problem.

Question 3

Score	Qualifications
0	No work or inaccurate separation of variables
1	Error in antiderivative
	OR missing <i>u</i> -substitution
	OR missing + C
2	Does not solve for C (does not use initial condition)
	OR error in <i>u</i> -substitution.
3	Error in solving for C
	OR error in solving for P.
4	Error in notation.
5	Proper notation.

5 5. Evaluate the integral:
$$\int_{0}^{1} \frac{x^{2}}{2-x^{3}} dx$$

$$U = 2 - x^{3} \begin{pmatrix} u(1) = 4 \\ u(0) = 2 \end{pmatrix}$$

$$\int_{0}^{1} x^{2} (2-x^{3})^{-1} dx$$

$$U = 2 - x^{3} \begin{pmatrix} u(0) = 2 \\ u(0) = 2 \end{pmatrix}$$

$$= 2 \int_{0}^{1} x^{2} u^{-1} \frac{du}{-3x^{2}}$$

$$= -\frac{1}{3} 2 \int_{0}^{1} u^{-1} du$$

$$= -\frac{1}{3} 2 \int_{0}^{1} u^{-1} du$$

$$= -\frac{1}{3} 2 \int_{0}^{1} u^{-1} du$$

$$= -\frac{1}{3} (\ln(1) - \ln(2)) = -\frac{1}{3} (0 - \ln 2) = \frac{1}{3} \ln 2$$

$$= -\frac{1}{3} \ln (\frac{1}{2})$$

5 5. Evaluate the integral: $\int_{0}^{1} \frac{x^{2}}{2-x^{3}} dx$ $u = 2-x^{3}$ $u(1) = 2-(1)^{3} = 1$ $u(0) = 2-(0)^{3} = 2$ $\frac{du}{dx} = -3x^{2}$ $= \int_{1}^{1} \frac{x^{2}}{u} \cdot \frac{du}{-3x^{2}} = dx$ $= \int_{1}^{1} \frac{x^{2}}{u} \cdot \frac{du}{-3x^{2}} = dx$ $= -\frac{1}{3} \int_{1}^{1} \frac{1}{u} du$ $= -\frac{1}{3} (\ln |u|) \int_{1}^{1} \frac{1}{2}$ $= -\frac{1}{3} [\ln |1| - \ln |2|]$ $= -\frac{1}{3} [0 - \ln 2]$ $= -\frac{1}{3} [-\ln 2]$

5. Evaluate the integral: $\int_{0}^{1} \frac{x^{2}}{2-x^{3}} dx$ $u(1) = 2 - (1)^{s} = 2 - 1 = 1$ U= 2-x3 $= \int_{0}^{1} x^{2}(z-x^{3}) dx$ $u(0) = 2 - (0)^{5} = 2 - 0 = 2$ 4=-3x2 In 61 or $=\int_{2}^{1}\frac{du}{\sqrt{2}} -\frac{1}{-3\frac{du}{\sqrt{2}}}$ du=dx = (] -] =] $> = -\frac{1}{3} (|n2 - x^3|)$ $=-\frac{1}{3}\left(\int_{n}^{1}|z-z^{3}|-\left(\int_{n-1}^{1}|z-1^{3}|\right)\right)$ =-== j!=du $= -\frac{1}{2}(\ln|-C| - \ln|)$ =-{(InG-In1)-5. Evaluate the integral: $\int_{-1}^{0} \frac{x^2}{1-x^3} dx$ $\int_{-1}^{0} \frac{\chi^2}{1-\chi^3} d\chi$ $=-\frac{1}{2}(\ln|1| - \ln|2|)$ $= \int_{\infty} x^{2} (u)^{-1} \frac{du}{3x^{2}}$ $= \int x^{2}(1-x^{3}) dx$ =-1 (In/1)-In/21) $U = 1 - x^3$ $= \int_{2}^{2} u^{-1} \frac{du}{-3}$ $\frac{dy}{dx} = -3x^2$ =-13 Su-1 du $dx = \frac{du}{3x^2}$ $= -\frac{1}{3} \int_{-1}^{1} du$ = -\frac{1}{3} (ln|v|) | = -1 (ln|x|) | Simplify J 4(0)= 4(-1)=2

5. Evaluate the integral: $\int_{-1}^{0} \frac{x^3}{1+x^4} dx$ $\int_{-\infty}^{\infty} \frac{x^{3}}{1+x^{4}} dx \quad U = 1+x^{4} \quad U(0) = 1$ $\iint_{-\infty}^{2} \frac{x^{3}}{1+x^{4}} \frac{du}{dx} = 4x^{3} \quad U(-1) = 2$ $\iint_{-\infty}^{2} \frac{x^{3}}{1+x^{4}} \frac{du}{4x^{3}} = dx$ $=\frac{1}{4}\int_{-\frac{1}{4}}^{2} du$ = + (lulul) [2 = = = (lui21 - lui1) = = 4 (lu/21) = + (lu121) = lu121

 $U = 2 - \chi^3$ 2- 5. Evaluate the integral: $\int_0^1 \frac{x^2}{2-x^3} dx$ $\int \frac{x^2}{2-x^3} dx = \int x^2(2-x^3)^2 dx$ $\frac{du}{dx} = -3x^2$ = S' x/2(U) -1 du $\frac{du}{-3x^2} = dx$ = 35 (U) du antiderived U=2-(1)3 $= -\frac{1}{3} \left(\frac{1}{2} + \frac{1}{2} \right)^{3} - \frac{1}{2} + \frac{1}{2} \right) = -\frac{1}{3} \left(\frac{1}{2} - \frac{1}{3} \right)^{2} + \frac{1}{2} = \frac{1}{2} - \frac$

ł 5. Evaluate the integral: $\int_0^1 \frac{x^2}{2-x^3} dx$ x2(2-x3) dx $V = 2 - x^{3} \qquad \int \frac{du}{-3x^{2}} = dx$ $\frac{du}{dx} = -3x^{2} \qquad \int -3x^{2} = dx$ = (x². U⁻¹. <u>du</u> -3x² =-1) - du -デーショル(2-(1))-(ショル(2-03) $= -\frac{1}{3} \ln(2-x^3)$ seximite integral ... recom go beek

5. Evaluate the integral: $\int_{-1}^{0} \frac{x^{3}}{1+x^{4}} dx$ $= \int_{-1}^{0} \frac{U}{1+x^{4}} \frac{dU}{3x^{4}}$ $= \frac{1}{3} \int_{-1}^{0} \frac{U}{1+x^{4}} \frac{dU}{x^{4}}$ $= \frac{1}{3} \int_{-1}^{0} \frac{U}{1+x^{4}} \frac{dU}{x^{4}}$ $= \frac{1}{3} \int_{-1}^{0} \frac{U}{1+x^{4}} \frac{dU}{x^{4}}$ $U = 1+x^{4}$ $U = 1+x^{4}$ $U = 1+x^{4}$ $U = 1+x^{4}$

2. The figure shows the velocity, in meters per Velocity 80 second, of a particle moving along a 0 60 coordinate line. At t = 45 bis the particle speeding up, slowing down, or neither? 40 (alt) EV(1) L 20 a (A EV(H) Same sign opp. signs Time - 20 - 40 velocity and assolution at t= 45 avere the control of t= 45 it = 45 the particle is speeding up b/c v(1) & a (1) have the same sign 45 50 30 40 10 20 2 2. The figure shows the velocity, in meters per Velocity 80 second, of a particle moving along a coordinate line. At t = 25, is the particle 60 Slowing Jown O/C v(H) O and atto. 40 20 Time - 20 - 40 10 20 30 40 50 VIT. 2. The figure shows the velocity, in meters per Velocity EACT) 80 second, of a particle moving along a 0 121 60 coordinate line. At t = 45, is the particle speeding up, slowing down, or neither? 40 @ t= 45 the particle is 20 slowing down because The sign of acceleration >0 -20 prelocity The not the same 10 20 30 40 at 4=45 VU +=45 1 V(45) -0 a (45)>0 ble verst act) have different signs @ t=+5

 \P 3. A function P(t) models the total amount of paper, where P is measured in tons and t is measured in months, used at a local school. School administrators estimate that P will satisfy the differential

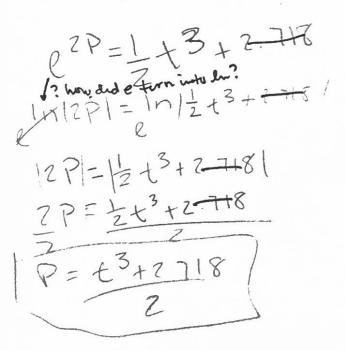
equation $\frac{dP}{dt} = \frac{3t^2}{e^{2P}}$. Find a solution P(t) to the differential equation satisfying $P(0) = \frac{3}{2}$. U= 2P tp $\frac{dP}{dt} = \frac{3t^2}{2P}$ du dP Sp2PdP= S3t²dt $Se^{u} \frac{du}{2} = t^{3} t^{2}$ $\frac{1}{2}(e^{2P})=t^{3}+\frac{e^{3}}{2}$ $\frac{1}{2}Se^{\omega}d\omega = t^3 + C$ $e^{2P} = \left(t^{3} + \frac{e^{3}}{2}\right)^{2}$ $\frac{1}{2}\left(e^{\omega}\right)=t^{3}+C$ $ln(e^{2t}) = ln(2t^3 + e^3)$ $\frac{1}{2}(e^{2P}) = t^{3} + C$ $\frac{1}{2}e^{2(3/2)} = 0^{3} + C$ $\frac{e^{2(3/2)}}{2} = C$ $\frac{2P}{2} = \ln\left[2t^3 + e^3\right]$ $P(t) = ln (2t^3 + e^3)$

3 3. A function P(t) models the total amount of paper, where P is measured in tots and t is measured
in months, used at a local school. School administrators estimate that P will satisfy the differential
equation
$$\frac{dP}{dt} = \frac{3t^2}{e^{2P}}$$
. Find a solution P(t) to the differential equation satisfying P(0) = $\frac{1}{2}$
 $dI_1 - \frac{dP}{d4} = -\frac{3t^2}{e^{2P}} - d4$
 $e^{2P}dP = -\frac{3t^2}{e^{2P}} - d4$
 $e^{2P}dP = -\frac{3t^2}{e^{2P}} - d4$
 $e^{2P}dP = -\frac{3t^2}{2} - d4$
 $dV - \frac{dV}{2}$
 $e^{2P}dP = -\frac{3t^2}{2} - d4$
 $dV - \frac{dV}{2}$
 $e^{2P}dP = -\frac{3t^2}{2} - d4$
 $V_2 - e^{2P}dP = -\frac{3t^2}{2} - \frac{3t^2}{2} - \frac$

2 3. A function P(t) models the total amount of paper, where P is measured in tons and t is measured in months, used at a local school. School administrators estimate that P will satisfy the differential equation $\frac{dP}{dt} = \frac{3t^2}{e^{2P}}$. Find a solution P(t) to the differential equation satisfying $P(0) = \frac{1}{2}$

+= 0 P= -

dP 3t2 At p2p $\int_{at}^{at} dt C^{2P} dp = 3t^{2} dt$ Sev. A Ren = S3t2 du もしニナ 53セーロ $\frac{1}{2}e^{2P} = \frac{1}{2}\cdot t^{3} + C$ $\frac{1}{2}e^{2P} = \frac{1}{2}t^{3} + C$ $\frac{1}{2}e^{2(t)} = \frac{1}{2}(0)^{3} + C$ 1 e'= C 2(Z.719)=C



3. A function
$$P(t)$$
 models the total amount of paper, where P is measured in tons and t is measured
in months, used at a local school. School administrators estimate that P will satisfy the
differential equation $\frac{dP}{dt} = \frac{3t^2}{e^{2P}}$. Find a solution $P(t)$ to the differential equation satisfying
 $P(0) = \frac{1}{2} \cdot \frac{c_{0,1} \pm 3}{t}$
 $\frac{dP}{dt} = \frac{3t^2}{e^{2P}}$. Find a solution $P(t)$ to the differential equation satisfying
 $P(0) = \frac{1}{2} \cdot \frac{c_{0,1} \pm 3}{t}$
 $\frac{dP}{dt} = \frac{3t^2}{e^{2P}}$. dt
 $e^{\pm P} \cdot dP = \frac{3t^2}{e^{2P}} \cdot dt$
 $e^{\pm P} \cdot dP = \frac{3t^2}{e^{2P}} \cdot dt$
 $\frac{dV}{dP} = 2$
 $\frac{dP}{dV} = \frac{3t^2}{e^{2P}} \cdot \frac{dt}{e^{2P}} \cdot \frac{dt}{e^{2P}} \cdot \frac{dt}{e^{2P}} = \frac{3t^2}{e^{2P}} \cdot \frac{dt}{e^{2P}} \cdot \frac$

3. A function P(t) models the total arrount of paper, where P is measured in tons and t is measured in months, used at a local school. School administrators estimate that P will satisfy the differential equation $\frac{dP}{dt} = \frac{3t^2}{e^{2P}}$. Find a solution P(t) to the differential equation satisfying $P(0) = \frac{1}{2}$.

2

$$e^{aP} \cdot OP = 3E^2 \cdot dE$$

 $e^{aP} \cdot e^{aP}$

$$\int e^{ap} dP = \int 3(-1) +$$

$$\frac{11}{2} \frac{2}{2} \frac{1}{2} \frac{1$$

E Let f and g be the functions given by $f(x) = e^x$ and $g(x) = \ln x$. Find the area of the region enclosed by the graphs of f and g between $x = \frac{1}{2}$ and x = 1.

Score	Qualifications
0	
1	
2	
3	
4	
5	

Create A Rubric

The position equation for the movement of a particle is given by $x(t) = \frac{\cos t}{1-\sin t}$ where x is measured in feet and t is measure in seconds. Find the velocity equation.

Score	Qualifications
0	
1	
2	
3	
4	
5	

Create A Rubric (Sample Rubrics)

Let f and g be the functions given by $f(x) = e^x$ and $g(x) = \ln x$. Find the area of the region enclosed by the graphs of f and g between $x = \frac{1}{2}$ and x = 1.

Solution: Area =
$$\int_{1/2}^{1} (e^x - \ln x) dx$$

= 1.223

Score	Qualifications
0	No work or no understanding of area btn curves (i.e., missing limits, no integral)
1	Correct limits, but wrong function
	(i.e., wrong order of functions, $g(x) - f(x)$ OR missing one of the functions)
	OR correct function, but error in limits
2	Correct limits & order of functions, $f(x) - g(x)$, but does not calculate an answer
3	Computation error (AP-style)
4	Error in notation.
5	Proper notation

The position equation for the movement of a particle is given by $x(t) = \frac{\cos t}{1-\sin t}$ where x is measured in feet and t is measured in seconds. Find the velocity equation.

Solution:
$$v(t) = x'(t)$$
$$= \frac{(1-\sin t)(-\sin t) - \cos t (-\cos t)}{(1-\sin t)^2}$$
$$= \frac{-\sin t + \sin^2 t + \cos^2 t}{(1-\sin t)^2}$$
$$= \frac{-\sin t + 1}{(1-\sin t)^2}$$
$$= \frac{1}{1-\sin t}$$

Score	Qualifications
0	Not doing quotient rule
1	Error in quotient rule
	OR error in one of the derivatives (f' or g')
2	Error in simplification (i.e. doesn't distribute "-" correctly)
3	Error in trig simplification. (i.e. doesn't replace $\sin^2 x + \cos^2 x$ with 1)
4	Error in notation.
5	Proper notation used throughout problem.