U and US in Calculus 2017 AP Annual Conference

Barbara Kane \& Patrick Gierut AP Calculus Teachers
J. Sterling Morton East High School

Question 5

Score	Qualifications
0	No work or no anti-differentiation or u-substitution not used
1	Error in choosing u or $d u / d x$. No u \#'s found.
2	Error in substitution or simplifying.
3	Error in FTC OR computation error.
4	Error in notation.
5	Proper notation used throughout problem.

Question 2

Score	Qualifications
0	No work or understanding about both the sign of $v(t)$ and $a(t)$ (referencing only $v(t)$ or $a(t))$
1	Recognizes need to use $a(t)$ and $v(t)$, but writes wrong information about $a(t)$ and $v(t)$ at correct t-value
2	Recognizes need to use $a(t)$ and $v(t)$, writes correct information about $a(t)$ or $v(t)$, but writes incorrect conclusion OR no t-value referenced at all OR only says $a(t) \& v(t)$ have opposite/same signs.
3	Writes correct information about $a(t)$ or $v(t)$ and correct conclusion.
4	Error in notation.
5	Proper notation used throughout problem.

Question 3

Score	Qualifications
0	No work or inaccurate separation of variables
1	Error in antiderivative OR missing u-substitution OR missing + C
2	Does not solve for C (does not use initial condition) OR error in u-substitution.
3	Error in solving for C OR error in solving for P. 4
5	Error in notation.

5
5. Evaluate the integral: $\int_{0}^{1} \frac{x^{2}}{2-x^{3}} d x$

$$
\begin{aligned}
& \int_{0}^{1} x^{2}\left(2-x^{3}\right)^{-1} d x
\end{aligned} \quad \begin{array}{ll}
1-x^{3} d x & \frac{d u}{d x}=-3 x^{2} \\
=\int^{1} x^{2} u^{-1} \frac{d u}{-3 x^{2}} & \frac{d u}{-3 x^{2}}=d x \\
=-\frac{1}{3} S^{1} u^{-1} d u(0)=2 \\
=-\left.\frac{1}{3} \ln |w|\right|_{2} ^{u} & \\
=-\frac{1}{3}(\ln (1)-\ln (2))=-\frac{1}{3}(0-\ln 2)=\frac{1}{3} \ln 2 \\
=-\frac{1}{3} \ln \left(\frac{1}{2}\right) & \ln \left(\frac{1}{2}\right) \\
=-\frac{\ln }{3}
\end{array}
$$

5 5. Evaluate the integral: $\int_{0}^{1} \frac{x^{2}}{2-x^{3}} d x$

$$
\begin{array}{ll}
u=2-x^{3} & u(1)=2-(1)^{3}=1 \\
u(0)=2-(0)^{3}=2 \\
\frac{d u}{d x}=-3 x^{2} &
\end{array}
$$

$$
-\int \frac{1 u}{x^{2}} d u \quad \frac{d u}{-3 x^{2}}=d x
$$

$$
=\int_{2}^{1} \frac{x^{2}}{u} \cdot \frac{d u}{-3 x^{2}}
$$

$$
=-\frac{1}{3} \int_{2}^{1} \frac{1}{u} d u
$$

$$
=-\left.\frac{1}{3}(\ln |u|)\right|_{2} ^{1}
$$

$$
=-\frac{1}{3}[\ln |1|-\ln |2|]
$$

$$
=-\frac{1}{3}[0-\ln 2]
$$

$$
=-\frac{1}{3}[-\ln 2]
$$

3 5. Evaluate the integral: $\int_{0}^{1} \frac{x^{2}}{2-x^{3}} d x$

$$
\begin{aligned}
& =\int_{0}^{1} x^{2}\left(2-x^{3}\right)^{-1} d x \\
& =\int_{2}^{1} u^{-1} \frac{d u}{-3 x^{3}} \\
& =\int_{2}^{1} u^{-1} \frac{d u}{-3} \\
& =-\frac{1}{3} \int_{2}^{1} \frac{1}{u} d u \\
& =-\left.\frac{1}{3}(\ln u)\right|_{2} ^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=2-x^{3} \\
\frac{d u}{d x}=-3 x^{2}
\end{array} \\
& \begin{array}{l}
=2-x^{3} \\
\frac{d u}{d x}=-3 x^{2}
\end{array} \\
& u(1)=2-(1)^{3}=2-1=1 \\
& u(0)=2-(0)^{5}=2-0=2 \\
& \frac{d u}{-3 x^{2}}=d x \\
& \text { (yous music }=-\frac{\ln 6}{3} \\
& \left.\rightarrow=-\frac{1}{3}\left(\ln \varepsilon^{2-x^{3}} \mid\right)\right)_{2} \\
& =-\frac{1}{3}\left(\ln \left|2-2^{3}\right|-\left(\ln \left|2-1^{3}\right|\right)\right)^{3} \\
& =-\frac{1}{3}(\ln 1-6 \mid-\ln 1) \text {. } \\
& =-\frac{1}{3}(\ln 6-\ln 1) \text { - } \\
& =-\frac{1}{3}\left(\ln \frac{6}{1}\right)
\end{aligned}
$$

\qquad
3
5. Evaluate the integral: $\int_{-1}^{0} \frac{x^{2}}{1-x^{3}} d x$

$$
\begin{array}{rlrl}
& \int_{-1}^{0} \frac{x^{2}}{1-x^{3}} d x \\
=\int_{-1}^{0} x^{2}\left(1-x^{3}\right)^{-1} d x & =\int_{2}^{1} x^{2}(u)^{-1} \frac{d u}{-3 x^{2}} \\
u=1-x^{3} & =\int_{2}^{1} u^{-1} \frac{d u}{-3} \\
\frac{d u}{d x}=-3 x^{2} & & =-\frac{1}{3} \int_{2}^{1} u^{-1} d u \\
d x=\frac{d u}{-3 x^{2}} & & =-\frac{1}{3} \int_{2}^{1} \frac{1}{u} d u \\
u(0)=1 & & \left.\left.=-\frac{1}{3}|\ln | u \right\rvert\,\right)_{2}^{1} \\
u(-1)=2 & & -\left.\frac{1}{3}(\ln |x|)^{1}\right|_{2} ^{1}
\end{array}
$$

$$
\begin{aligned}
& =\int_{2}^{1} x^{2}(u)^{-1} \frac{d u}{-3 x^{2}} \\
& =\int_{2}^{1} u^{-1} \frac{-\frac{1}{3}(\ln |1|-\ln |2|)}{-3}=\frac{-1}{3}(\ln |1|-\ln |2|) \\
& =-\frac{1}{3} \int_{2}^{1} u^{-1} d u \\
& =-\frac{1}{3} \int_{2}^{2} \frac{1}{u} d u \\
& =-\frac{-1}{3} \ln |1|+\frac{1}{3} \ln |2| \\
& =\frac{-1}{3}(\ln |u|)_{2}^{1} \\
& \sin p|i f\rangle \\
& =
\end{aligned}
$$

2.5. Evaluate the integral: $\int_{-1}^{0} \frac{x^{3}}{1+x^{4}} d x$

$$
\begin{aligned}
& \int_{-1}^{0} \frac{x^{3}}{1+x^{4}} d x \quad u=1+x^{4} \quad u(0)=1 \\
& e_{-1}^{12} \frac{x^{3}}{4} \frac{d u}{4 x^{2}} \quad \frac{d u}{d x}=4 x^{3} u(-1)=2 \\
= & \frac{1}{4} \int_{1}^{2} \frac{1}{4} \frac{1}{4} d u \\
= & \left.\frac{1}{4}(\ln |u|)\right|_{1} ^{2} \\
= & \frac{1}{4}(\ln |21-\ln | 1 \mid) \\
= & \frac{1}{4}\left(\ln \left|\frac{2}{1}\right|\right) \\
= & \frac{1}{1}(\ln |2|) \\
= & \frac{\ln |2|}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. 5. Evaluate the integral: } \int_{0}^{1} \frac{x^{2}}{2-x^{3}} d x \\
& \int_{0}^{1} \frac{x^{2}}{2-x^{3}} d x=\int_{0}^{1} x^{2}\left(2-x^{3}\right)^{-1} d x \\
& =\int_{2}^{1} x k(u)^{-1} \frac{d u}{-3 x^{2}} \\
& =-\frac{1}{3} \int^{2}(v)^{-1} d u \\
& \begin{array}{l}
=-\left.\frac{1}{3} \cdot \frac{1^{4}}{}\right|_{2}=-\frac{1}{3}\left(\frac{1}{2+(2)^{3}}-\frac{1}{2-(1)^{3}}\right)=-\frac{1}{3}\left(\frac{1}{-6}-\frac{1}{3}\right)
\end{array} \\
& v=2-x^{3} \\
& \frac{d u}{d x}=-3 x^{2} \\
& \frac{d u}{-3 x^{2}}=d x \\
& u=2-(1)^{3} \\
& =2-1 \\
& =1 \\
& \left.\begin{array}{rl}
\left(\frac{1}{-6}-\frac{1}{3}\right. \\
=2
\end{array}\right) \begin{aligned}
& u=2-(0)^{3} \\
&=-\frac{1}{2}\left(\frac{2}{6}\right)=-\frac{2}{18}=2-0 \\
&=
\end{aligned}
\end{aligned}
$$

5. Evaluate the integral: $\int_{0}^{1} \frac{x^{2}}{2-x^{3}} d x$

$$
\left.\begin{array}{rlr}
& \int_{0}^{1} x^{2}\left(2-x^{3}\right)^{-1} d x & u=2-x^{3} \\
= & \frac{d u}{d x}=-3 x^{2}
\end{array}\right] \frac{d u}{-3 x^{2}}=d x
$$

$$
=-\frac{1}{3} \ln \left(2-x^{3}\right) 1_{0}^{1}
$$

suxiaite unteswil... en te you sech te yow $x:$.

$$
\begin{aligned}
& \text { 5. Evaluate the integral: } \int_{-1}^{0} \frac{x^{3}}{1+x^{4}} d x \\
& =\int_{-1}^{0} \frac{u}{1+x^{4}} \frac{d u}{3 x^{4}} \\
& =1 / 3 \int_{-1}^{0} \frac{u}{1+x^{4}} \frac{d u}{x^{4}} \\
& =
\end{aligned}
$$

$$
\begin{array}{rl}
u=1+x^{4} \quad u=x^{3} & u(0)=0 \\
\frac{d u}{d x}=3 \times 4 & u(1)=-1 \\
\frac{d u}{3 x^{4}} & =d x \\
u & =1+\times 4 \\
\frac{d u}{d x} &
\end{array}
$$

2. The figure shows the velocity, in meters per second, of a particle moving along a coordinate line. At $=45$, is the particle speeding up, slowing down, or neither?
C) $a(t) \& v(r)$

Velocity

$\therefore t=45$ the particle is
speeding up $b / c v(t) \& a(t)$
have tile same sima
2 2. The figure shows the velocity, in meters per second, of a particle moving along a coordinate line. At $t=25$, is the particle y hat is? speeding up, slowing down, or neither?

$$
d \text {. } c^{\text {when e all the timer? }}
$$

$$
\text { Slowing down } b^{\text {when.allta }} / \mathrm{c}(t)>0 \text { and }
$$ att) $=$.

2. The figure shows the velocity, in meters per 2 second, of a particle moving along a coordinate line. At $t=45$, is the particle speeding up, slowing down, or neither?
© $t=45$ the particle is slowing down because the sign of acceleration >0 \& velocity que not the sam at $t=45$

3. A function $P(t)$ models the total amount of paper, where P is measured in tons and t is measured in months, used at a local school. School administrators estimate that P will satisfy the differential equation $\frac{d P}{d t}=\frac{3 t^{2}}{e^{2 P}}$. Find a solution $\underbrace{P(t)}$ to the differential equation satisfying $P(0)=\frac{3}{2}$.

$$
\begin{aligned}
& \frac{d P}{d t}=\frac{3 t^{2}}{e^{2 P}} \\
& \int e^{2 P} d P=\int 3 t^{2} d t \\
& \int e^{u} \frac{d u}{2}=t^{3}+C \\
& \frac{1}{2} \int e^{u} d u=t^{3}+C \\
& \frac{1}{2}\left[e^{u}\right]=t^{3}+C \\
& \frac{1}{2}\left[e^{2 P}\right]=t^{3}+C \\
& \frac{1}{2} e^{2(3 / 2)}=0^{3}+C \\
& \frac{e^{2(3 / 2)}}{2}=C
\end{aligned}
$$

$$
u=2 p
$$

$$
\frac{d u}{2}=d P
$$

$$
\begin{aligned}
& S e^{u} \frac{d u}{2}=t^{3}+c \\
& \frac{1}{2} \int e^{\omega} d u=t^{3}+c
\end{aligned} \quad>\frac{1}{2}\left[e^{2 p}\right]=t^{3}+\frac{e^{3}}{2}
$$

$$
e^{2 P}=\left[t^{3}+\frac{e^{3}}{2}\right]_{2}
$$

$$
\ln \left(e^{2 t}\right)=\ln \left(2 t^{3}+e^{3}\right)
$$

$$
\frac{2 P}{2}=\frac{\ln \left[2 t^{3}+e^{3}\right]}{2}
$$

$$
P(t)=\frac{\ln \left[2 t^{3}+e^{3}\right)}{2}
$$

3 3. A function $P(t)$ models the total amount of paper, where P is measured in tons and t is measured in months, used at a local school. School administrators estimate that P will satisfy the differential equation $\frac{d P}{d t}=\frac{3 t^{2}}{e^{2 P}}$. Find a solution $P(t)$ to the differential equation satisfying $P(0)=\frac{1}{2}$

$$
\begin{aligned}
& \text { db. } \frac{d P}{d t}=\frac{3 t^{2}}{e^{2 P}} \cdot d t \\
& e^{2 D} d P=\frac{3 t^{2}}{e^{2 D}} d t e^{2 \Gamma} \\
& e^{2 P} d P=3 t^{2} d t \\
& \int e^{2 P} d P=\int 3 t^{2} d t \\
& \int e^{\prime 3} \frac{d v}{2}=\int 3 t^{2} d t \\
& 1 / 2 \int e^{u} d u-\int 3 t^{2} d t \\
& 1 / 2 \cdot e^{u}=3 \cdot 1 /+2 t^{3}+C \\
& 1 / 2 e^{u}=t^{3}+C \\
& 1 / 2 c^{2 P}: t^{3}+c \\
& 1 / 2 e^{2(1 / 2)}=0^{3}+C \\
& 1 / 2 e^{1}=C \\
& 2.1 / 2 e^{2 p}=\left(t^{3}+1 / 2 e^{1}\right)^{2} \\
& \left.\frac{e^{2 p}}{\ln }=\frac{\left(2 t^{3}\right.}{\ln }+e^{1}\right) \text { ln a side, not eachterm } \\
& 2 P=\operatorname{tn}^{2 t^{3}}+d t^{\prime} \ln \left|2 t^{3}+e\right| \\
& 2 P=\ln ^{2 t^{3}}+1 \\
& P(1)=\frac{\ln ^{2 t^{3}}+1}{2}
\end{aligned}
$$

2 3. A function $P(t)$ models the total amount of paper, where P is measured in tons and t is measured in months, used at a local school. School administrators estimate that P will satisfy the differential equation $\frac{d P}{d t}=\frac{3 t^{2}}{e^{2 P}}$. Find a solution $P(t)$ to the differential equation satisfying $P(0)=\frac{1}{2}$

$$
\begin{aligned}
& \frac{d p}{d t}=\frac{3 t^{2}}{e^{2 P}} \\
& j=2 P \\
& 2 \cdot \frac{3 t^{2}}{2} \cdot d t \\
& \frac{d}{2}=d t C^{2 P} \cdot d p=3 t^{2} d t \\
& \int e^{u} \cdot d F \frac{\partial u}{2}=\int 3 t^{2} d u \\
& \frac{1}{2} e^{u}=\frac{1}{2} \int 3 t^{2} d u \\
& \frac{1}{2} e^{v}=\frac{1}{2} \cdot t^{3}+C \\
& \frac{1}{2} e^{2 P}=\frac{1}{2} t^{3}+C \\
& \frac{1}{2} e^{2\left(\frac{1}{2}\right)}=\frac{1}{2}(0)^{3}+C \\
& \frac{1}{2} e^{\prime}=C \\
& \frac{1}{2}(2.718)=c \\
& e^{2 P}=\frac{1}{7}+3+276 \\
& 1 \text { ? Wow dud F Furn itu len? } \\
& l^{\ln |2 \vec{P}|}=e^{\ln \left\lvert\, \frac{1}{2} t^{3}+\cdots\right.} \\
& 12 P=1 \frac{1}{2} t^{3}+2-7+81 \\
& \frac{2}{2} P=\frac{\frac{1}{2} t^{3}+2-7+8}{2} \\
& P=\frac{t^{3}+2718}{2}
\end{aligned}
$$

3. A function $P(t)$ models the total amount of paper, where P is measured in tons and t is measured in months, used at a local school. School administrators estimate that P will satisfy the differential equation $\frac{d P}{d t}=\frac{3 t^{2}}{e^{2 P}}$. Find a solution $P(t)$ to the differential equation satisfying

$$
\begin{aligned}
& \begin{array}{c}
P(0)=\frac{1}{2} \cdot\left(0, \frac{1}{2}\right) \\
+P
\end{array} \\
& \frac{d P}{d t}=\frac{3 t^{2}}{e^{2 P}} \cdot d t \\
& e^{2 P} \cdot d p=\frac{3 t^{2}}{e^{2 P}} d t \\
& u=2 P \\
& \frac{d v}{d P} \cdot 2 \\
& \int e^{2 P} d P=\int 3 t^{2} d t \\
& \begin{array}{c}
S e^{u} \frac{d u}{2}=3 \int t^{2} d t \\
\frac{1}{2} \int e^{u} d v=3\left(\frac{1}{3} t^{3}\right)+c \\
\left.\frac{1}{2} \ln \right\rvert\,=t^{3}+c \\
\frac{1}{2} \ln |2 p|=t^{3}+C
\end{array} \\
& \frac{d u}{2}=d p \\
& \frac{1}{2} \ln \left|z\left(\frac{1}{2}\right)\right|=0^{3}+C \\
& \text { 2. } \frac{1}{2} \ln |2 P|=\left(t^{3}+0\right)^{2} \\
& \frac{1}{2} \ln |1|=C \\
& e^{\ln |2 p|}=e^{2 t^{3}} \\
& \frac{1}{2}(0)=C \\
& 0=C \\
& |2 P|=e^{2 t^{3}} \\
& 2 p= \pm e^{2+3}\left(0+\frac{1}{2}=\frac{1}{2}>0\right) \\
& \frac{z p}{4}=\frac{e^{2+3}}{2} \\
& P=\frac{e^{2 t^{3}}}{2}
\end{aligned}
$$

3. A function $P(t)$ models the total amount of paper, where P is measured in tons and t is measured in months, used at a local school. School administrators estimate that P will satisfy the differential equation $\frac{d P}{d t}=\frac{3 t^{2}}{e^{2 P}}$. Find a solution $P(t)$ to the differential equation satisfying $P(0)=\frac{1^{-}}{2}$.

$$
\begin{aligned}
& d+\frac{d P}{d t}=\frac{3 t^{2}}{e^{P}} \cdot d t \\
& e^{2 P} \cdot d P=\frac{3 t^{2}}{e^{?}} \cdot d t \cdot t^{? P} \\
& \int e^{2 P} d P=\int\left(3 t^{2}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \text { up } p p \\
& \text { w- } 2 d p
\end{aligned} \int\left(e^{1}\right) \frac{d u}{2}=t^{3}+C
$$

$$
=2
$$

$-1 \cdot d p$

$$
\epsilon^{p}=l^{2}
$$

$$
\begin{aligned}
& P(0)=e^{(1 / 7)}=t^{-}(0)^{2} \cdot 0 \\
& P(0)=1.649
\end{aligned}
$$

Create A Rubric

Let f and g be the functions given by $f(x)=e^{x}$ and $g(x)=\ln x$. Find the area of the region enclosed by the graphs of f and g between $x=\frac{1}{2}$ and $x=1$.

Score	Qualifications
0	
1	
2	
3	
4	
5	

The position equation for the movement of a particle is given by $x(t)=\frac{\cos t}{1-\sin t}$ where x is measured in feet and t is measure in seconds. Find the velocity equation.

Let f and g be the functions given by $f(x)=e^{x}$ and $g(x)=\ln x$. Find the area of the region enclosed by the graphs of f and g between $x=\frac{1}{2}$ and $x=1$.

$$
\text { Solution: Area } \begin{aligned}
& =\int_{1 / 2}^{1}\left(e^{x}-\ln x\right) d x \\
& =1.223
\end{aligned}
$$

Score	Qualifications
0	No work or no understanding of area btn curves (i.e., missing limits, no integral)
1	Correct limits, but wrong function (i.e., wrong order of functions, $g(x)-f(x)$ OR missing one of the functions) OR correct function, but error in limits
2	Correct limits \& order of functions, $f(x)-g(x)$, but does not calculate an answer
3	Computation error (AP-style)
4	Error in notation.
5	Proper notation

The position equation for the movement of a particle is given by $x(t)=\frac{\cos t}{1-\sin t}$ where x is measured in feet and t is measured in seconds. Find the velocity equation.

Solution: $\quad v(t)=x^{\prime}(t)$

$$
\begin{aligned}
& =\frac{(1-\sin t)(-\sin t)-\cos t(-\cos t)}{(1-\sin t)^{2}} \\
& =\frac{-\sin t+\sin ^{2} t+\cos ^{2} t}{(1-\sin t)^{2}} \\
& =\frac{-\sin t+1}{(1-\sin t)^{2}} \\
& =\frac{1}{1-\sin t}
\end{aligned}
$$

Score	Qualifications
0	Not doing quotient rule
1	Error in quotient rule OR error in one of the derivatives (f^{\prime} or g^{\prime})
2	Error in simplification (i.e. doesn't distribute "-" correctly)
3	Error in trig simplification. (i.e. doesn't replace $\sin ^{2} x+\cos ^{2} x$ with 1)
4	Error in notation.
5	Proper notation used throughout problem.

