Topic 5: Differential Equations

Differential equations are tested every year. The actual solving of the differential equation is usually the main part of the problem, but it is accompanied by a question about its slope field or a tangent line approximation of some sort or something related. BC students may also be asked to approximate using Euler's Method. Large parts of the BC questions are often suitable for AB students and contribute to the AB subscore of the BC exam.

What students should be able to do:

- Find the *general solution* of a differential equation using the method of separation of variables (this is the *only* method tested).
- Find a *particular solution* using the initial condition to evaluate the constant of integration initial value problem (IVP)
- Understand that proposed solution of a differential equation is a function (not a number) and if it and its derivative are substituted into the given differential equation the resulting equation is true. This may be part of doing the problem even if solving the differential equation is not required (see 2002 BC 5(c))
- Growth-decay problems.
- Draw a slope field by hand.
- Sketch a particular solution on a (given) slope field.
- Interpret a slope field.
- For BC only: Use Euler's Method to approximate a solution.
- For BC only: use the method of partial fractions to find the antiderivative after separating the variables.
- For BC only: understand the logistic growth model, its asymptotes, meaning, etc. The exams have never asked students to actually solve a logistic equation IVP.

6 6 6 6 6 6 6 6 6 6 6 NO CALCULATOR ALLOWED

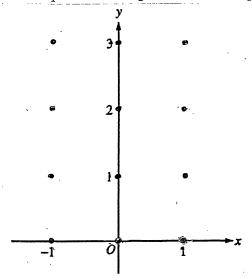
Let f be the function satisfying $f'(x) = x\sqrt{f(x)}$ for all real numbers x, where f(3) = 25.

(a) Find f''(3).

Continue problem 6 on page 15.

6 6 6 6 6 6 6 6 6 6 6 NO CALCULATOR ALLOWED

(b) Write an expression for y = f(x) by solving the differential equation $\frac{dy}{dx} = x\sqrt{y}$ with the initial condition f(3) = 25.

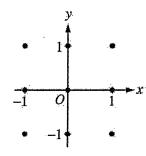

END OF EXAMINATION

THE FOLLOWING INSTRUCTIONS APPLY TO THE BACK COVER OF THIS SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE BACK OF THIS SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER APPEARS IN THE BOX(ES) ON THE BACK COVER.
- 6 MAKE SURE THAT YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMINATIONS YOU HAVE TAKEN THIS YEAR.

- 5. Consider the differential equation $\frac{dy}{dx} = x^4(y-2)$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.

(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the xy-plane. Describe all points in the xy-plane for which the slopes are negative.


5 5 5 5 5 5 5 5 5 5 NO CALCULATOR ALLOWED

(c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 0.

GO ON TO THE NEXT PAGE.

NO CALCULATOR ALLOWED

- 5. Consider the differential equation $\frac{dy}{dx} = (y-1)^2 \cos(\pi x)$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

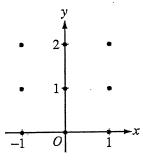
(b) There is a horizontal line with equation y = c that satisfies this differential equation. Find the value of c.

Do not write beyond this border.

Continue problem 5 on page 13.

(c) Find the particular solution y = f(x) to the differential equation with the initial condition f(1) = 0.

Do not write beyond this border.


GO ON TO THE NEXT PAGE.

Do not write beyond this border

NO CALCULATOR ALLOWED

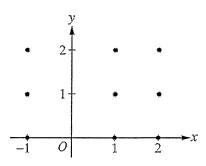
Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y - 1$.

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all solution curves to the differential equation are concave up.

(c) Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, a relative maximum, or neither at x = 0? Justify your answer.

(d) Find the values of the constants m and b, for which y = mx + b is a solution to the differential equation.


Do not write beyond this border.

nie beyond this border.

GO ON TO THE NEXT PAGE.

NO CALCULATOR ALLOWED

- 5. Consider the differential equation $\frac{dy}{dx} = \frac{y-1}{x^2}$, where $x \neq 0$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

Do not write beyond this border.

(b) Find the particular solution y = f(x) to the differential equation with the initial condition f(2) = 0.

(c) For the particular solution y = f(x) described in part (b), find $\lim_{x \to \infty} f(x)$.

Do'not write beyond this border.

Do not write beyond this border.