AP Topic: Power Series (BC only)

Since some graphing calculator can produce Taylor Polynomials, this question appears on the no calculator allowed section. (Questions from 1995 – 1999 before the FR sections was split do not have anything a calculator could do. They are interesting and clever and worth looking at.)

What students should be able to do:

- Find the Taylor (or Maclaurin) polynomial or series for a given function — usually 4 terms and the general term. This may be done by finding the various derivatives, or any other method such as substitution into a known series, long division, the formula for the sum of an infinite geometric series, integration, differentiation, etc.
- Know from memory the Maclaurin series for sin(x), cos(x), e^x, and 1/(1-x).
- Find related series by substitution, differentiation, integration or by adapting one of those above.
- Find the radius of convergence (usually by using the Ratio test, or from a geometric series).
- Find the interval of convergence using the radius and checking the endpoints separately.
- Work with geometric series.
- Use the convergence test separately and when checking the endpoints.
- Find a high-order derivative from the coefficient of a term.
- Estimate the error bound of a Taylor or Maclaurin polynomial by using alternating series error bound or the Lagrange error bound.
- Do not claim that a function is equal to (=) its Taylor or Maclaurin polynomial; it is only approximately equal (≈). This could cost a point.
3. The Taylor series about \(x = 5 \) for a certain function \(f \) converges to \(f(x) \) for all \(x \) in the interval of convergence. The \(n \)th derivative of \(f \) at \(x = 5 \) is given by \(f^{(n)}(5) = \frac{(-1)^n n!}{2^n (n+2)} \), and \(f(5) = \frac{1}{2} \).

(a) Write the third-degree Taylor polynomial for \(f \) about \(x = 5 \).

\[
P_3(x) = f(5) + f'(5)(x-5) + \frac{f''(5)}{2!}(x-5)^2 + \frac{f'''(5)}{3!}(x-5)^3
\]

\[
f'(5) = \frac{(x-5)(1)!}{2!(1+2)} = \frac{-1}{2(3)}
\]

\[
f''(5) = \frac{(-1)^2 2!}{2^2 (2+2)} = \frac{2}{4(4)}
\]

\[
f'''(5) = \frac{(-1)^3 3!}{2^3 (3+2)} = \frac{-1}{8(5)}
\]

\[
P_3(x) = \frac{1}{2} + \frac{-1}{6} (x-5) + \frac{2(1) (x-5)^2}{2!} + \frac{-1}{40} (x-5)^3
\]

\[
P_3(x) = \frac{1}{2} - \frac{1}{6} (x-5) + \frac{1}{12} (x-5)^2 - \frac{1}{40} (x-5)^3
\]

3 pts for \(P_3(x) \)
(-1 pt for each wrong term)

(b) Find the radius of convergence of the Taylor series for \(f \) about \(x = 5 \).

\[
f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n n! (x-5)^n}{2^n (n+2)} \frac{1}{n!}
\]

\[
= \sum_{n=0}^{\infty} \frac{(-1)^n (x-5)^n}{2^n (n+2) n!}
\]

\[
\text{Ratio Test:}
\]

\[
\lim_{n \to \infty} \left| \frac{(-1)^{n+1} (x-5)^{n+1}}{2^{n+1} (n+3)} \cdot \frac{2^n (n+2)}{(-1)^n (x-5)^n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} (x-5)^{n+1} 2^n (n+2)}{2^{n+1} (n+3) (-1)^n (x-5)^n} \right|
\]

\[
= \lim_{n \to \infty} \left| \frac{(-1)^{n+1} (x-5)^{n+1}}{2^n (n+3)} \cdot \frac{2^{n+1} (n+2)}{(-1)^n (x-5)^n} \right|
\]

\[
= \lim_{n \to \infty} \left| \frac{1}{2} (x-5)^3 \right|
\]

\[
\frac{1}{2} (x-5)^3 < 1
\]

\[
|x-5| < 2
\]

Radius of Convergence: 2
(c) Show that the sixth-degree Taylor polynomial for f about $x = 5$ approximates $f(6)$ with error less than $\frac{1}{1000}$.

$$|R_6(x)| \leq \frac{\max f^{(7)}(c)}{7!} |x-5|^7$$

Since $f(6)$ is alternating series with u_n decreasing to zero, the error approximating $f(6)$ is less than the 1st omitted term in the series.

$$\max |f^{(7)}(c)| = \frac{|(c-1)^7 \cdot 7!|}{2^7(7+2)}$$

$$= \frac{7!}{2^7(9)}$$

$$|f(6) - P_6(6)| \leq \frac{7!}{2^7(9)} |6-5|^7$$

$$\leq \frac{1}{2^7(9)}$$

$$= \frac{1}{1152}$$

$$\frac{1}{1152} < \frac{1}{1000}$$
6. The Maclaurin series for the function \(f \) is given by
\[
f(x) = \sum_{n=0}^{\infty} \frac{(2x)^{n+1}}{n+1} = 2x + \frac{4x^2}{2} + \frac{8x^3}{3} + \frac{16x^4}{4} + \cdots + \frac{(2x)^{n+1}}{n+1} + \cdots
\]
on its interval of convergence.

(a) Find the interval of convergence of the Maclaurin series for \(f \). Justify your answer.

\[\lim_{n \to \infty} \left| \frac{(2x)^{n+2}}{(2x)^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(x)^2 \cdot (n+1)}{1 \cdot (2x)^n} \right| = \lim_{n \to \infty} \left| 2x \cdot \left(\frac{n+1}{n+2} \right) \right| = |2x|\]

\[|2x| < 1\]
\[-1 < 2x < 1\]
\[-\frac{1}{2} < x < \frac{1}{2}\]

Test endpoints:
\[x = -\frac{1}{2}\]
\[\sum_{n=0}^{\infty} \frac{(2 \cdot -\frac{1}{2})^{n+1}}{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n+1}\]
\[\text{ast*}\]
\[\frac{1}{n+1} > 0\]
\[\frac{1}{h+1} > \frac{1}{h+2}\]
\[\lim_{n \to \infty} \frac{1}{n+1} = 0 \quad \text{(conv. by Alt. Series Test)}\]

\[\therefore \text{ interval of convergence } : \quad -\frac{1}{2} < x < \frac{1}{2}\]
(b) Find the first four terms and the general term for the Maclaurin series for $f'(x)$.

$$f(x) = 2x + \frac{4x^2}{2} + \frac{8x^3}{3} + \frac{16x^4}{4} + \ldots + \frac{(2x)^{n+1}}{n+1} + \ldots$$

$$f'(x) = 2 + 4x + 8x^2 + 16x^3 + \ldots + \frac{(n+1)(2x)^n - 2}{n+1} + \ldots$$

$$f''(x) = 2 + 4x + 8x^2 + 16x^3 + \ldots + 2(2x)^n + \ldots$$

(c) Use the Maclaurin series you found in part (b) to find the value of $f'\left(-\frac{1}{3}\right)$.

$$f'(x) = \sum_{n=0}^{\infty} 2(2x)^n$$

geometric series $a = 2$, $r = 2x$

$$= \frac{2}{1 - 2x}$$

$$f'\left(-\frac{1}{3}\right) = \frac{2}{1 - 2\left(-\frac{1}{3}\right)}$$

$$= \frac{2}{1 + \frac{2}{3}}$$

$$= \frac{2}{\frac{5}{3}}$$

$$f'\left(-\frac{1}{3}\right) = \frac{6}{5}$$
3. The Taylor series about \(x = 0 \) for a certain function \(f \) converges to \(f(x) \) for all \(x \) in the interval of convergence. The \(n \)th derivative of \(f \) at \(x = 0 \) is given by
\[
f^{(n)}(0) = \frac{(-1)^{n+1}(n+1)!}{5^n(n-1)^2} \quad \text{for} \quad n \geq 2.
\]
The graph of \(f \) has a horizontal tangent line at \(x = 0 \) and \(f(0) = 6 \).

(a) Determine whether \(f \) has a relative maximum, a relative minimum, or neither at \(x = 0 \). Justify your answer.
\[
f'(0) = 0 \quad \Rightarrow \quad \text{critical point at } x = 0
\]
\[
f''(0) = \frac{(-1)^2 \cdot 3!}{5^2 \cdot (2-1)^2} = \frac{-1 \cdot 3}{25}
\]
\[
f''(0) < 0 \quad \Rightarrow \quad 2\text{nd derivative test}
\]
\[
\text{f has rel. max. at } x = 0 \quad \text{b/c } f'(0) = 0 \text{ and } f''(0) < 0
\]

1 pt - answer
1 pt - reason

(b) Write the third-degree Taylor polynomial for \(f \) about \(x = 0 \).
\[
P_3(x) = f(0) + f'(0)(x-0) + \frac{f''(0)}{2!}(x-0)^2 + \frac{f'''(0)}{3!}(x-0)^3
\]
\[
f(0) = 6 \quad f'(0) = 0 \quad f''(0) = \frac{-1 \cdot 3}{25} \quad f'''(0) = \frac{(-1)^4 \cdot 4!}{5^3(3-1)^2} = \frac{4!}{125 \cdot 4}
\]
\[
P_3(x) = 6 + \frac{-1 \cdot 3}{25} x^2 + \frac{4!}{125 \cdot 4} x^3
\]
\[
P_3(x) = 6 - \frac{3}{25} x^2 + \frac{1}{125} x^3
\]

3 pts - \(P_3(x) \)
(-1 for error in each)
(c) Find the radius of convergence of the Taylor series for f about $x = 0$. Show the work that leads to your answer.

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} (n+1)!}{5^n (n-1)!^2} x^n = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} (n+1)}{5^n (n-1)^2} x^n$$

1 pt - general term

$\lim_{n \to \infty} \left| \frac{(-1)^{n+2} (n+2) x^{n+1}}{5^{n+1} (n+1)^2} \cdot \frac{5^n (n-1)^2}{(-1)^{n+1} (n+1) x^n} \right|$

1 pt - set up ratio

$= \lim_{n \to \infty} \left| \frac{(-1)(n+2)(n-1)^2 x}{5 n^2 (n+1)} \right|$

1 pt - limit of ratio

$= \left| \frac{-x}{5} \right|$

$= \left| \frac{x}{5} \right|$

$\left| \frac{x}{5} \right| < 1$

$|x| < 5$

1 pt - radius of convergence

Radius of convergence: 5
6. The function \(f \) is defined by \(f(x) = \frac{1}{1 + x^3} \). The Maclaurin series for \(f \) is given by

\[
1 - x^3 + x^6 - x^9 + \ldots + (-1)^n x^{3n} + \ldots,
\]

which converges to \(f(x) \) for \(-1 < x < 1\).

(a) Find the first three nonzero terms and the general term for the Maclaurin series for \(f'(x) \).

\[
f'(x) = -3x^2 + 6x^5 - 9x^8 + \ldots + 3n(-1)^n x^{3n-1} + \ldots
\]

(b) Use your results from part (a) to find the sum of the infinite series \(-\frac{3}{2^2} + \frac{6}{2^5} - \frac{9}{2^8} + \ldots + (-1)^n \frac{3n}{2^{3n-1}} + \ldots\)

\[
f'(\frac{1}{2}) = -3(\frac{1}{2})^2 + 6(\frac{1}{2})^5 - 9(\frac{1}{2})^8 + \ldots
\]

\[
f(x) = \frac{1}{1 + \frac{x^3}{2}} \]

\[
f'(x) = -3\frac{1}{(1 + x^3/2)^2}(3x^2)
\]

\[
f'(\frac{1}{2}) = -3\frac{1}{(1 + \frac{1/2}{2})^2}(3(\frac{1}{2})^3)
\]

\[
= -\frac{3/4}{(1 + 1/4)^2}
\]

\[
= \frac{-3/4}{8/4} = -\frac{16}{27}
\]
(c) Find the first four nonzero terms and the general term for the Maclaurin series representing \(\int_0^x f(t) \, dt \).

\[
\int_0^x \frac{1}{1+t^3} \, dt = \int_0^x (1 - t^3 + t^6 - t^9 + \cdots + (-1)^n t^{3n} + \cdots) \, dt
\]

\[
= (x - \frac{1}{4}x^4 + \frac{1}{7}x^7 - \frac{1}{10}x^{10} + \cdots + (-1)^n \frac{1}{3n+1} x^{3n+1} + \cdots)
\]

1pt - 1st 4 terms
1pt - general term

(d) Use the first three nonzero terms of the infinite series found in part (c) to approximate \(\int_0^{1/2} f(t) \, dt \). What are the properties of the terms of the series representing \(\int_0^{1/2} f(t) \, dt \) that guarantee that this approximation is within \(\frac{1}{10,000} \) of the exact value of the integral?

\[
\int_0^{1/2} f(t) \, dt \approx \frac{1}{2} - \frac{1}{4} \left(\frac{1}{2}\right)^4 + \frac{1}{7} \left(\frac{1}{2}\right)^7
\]

Since series in part (c) w/ \(x = \frac{1}{2} \)
has alternating decreasing terms in abs. value + \(\text{Ci}(0) \)
error bounded by abs value of next term.

1pt - prop of terms
1pt - abs value of 4th term
1pt - approx

\[
|\int_0^{1/2} f(t) \, dt - (\frac{1}{2} - \frac{1}{4} \left(\frac{1}{2}\right)^4 + \frac{1}{7} \left(\frac{1}{2}\right)^7)| \leq \frac{1}{10}
\]

\[
= \frac{1}{10240} < \frac{1}{10000}
\]
6. The function \(f \) is defined by the power series
\[
f(x) = -\frac{x}{2} + \frac{2x^2}{3} - \frac{3x^3}{4} + \cdots + \frac{(-1)^n nx^n}{n+1} + \cdots
\]
for all real numbers \(x \) for which the series converges. The function \(g \) is defined by the power series
\[
g(x) = 1 - \frac{x}{21} + \frac{x^2}{41} - \frac{x^3}{61} + \cdots + \frac{(-1)^n x^n}{(2n)!} + \cdots
\]
for all real numbers \(x \) for which the series converges.

(a) Find the interval of convergence of the power series for \(f \). Justify your answer.

\[
f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n nx^n}{n+1}
\]

Ratio Test

\[
\lim_{n \to \infty} \frac{(-1)^n (n+1)x^{n+1}}{n+2} \cdot \frac{n}{(-1)^n nx^n}
\]

\[
= \lim_{n \to \infty} \frac{(-1)x \cdot (n+1)(n+1)}{(n+2)n}
\]

\[
= -|x|
\]

\[
\begin{align*}
\quad & |x| < 1 \\
\quad & |x| < 1 \\
\quad & |x| < 1 \\
\quad & |x| < 1
\end{align*}
\]

Check endpoints:

\[
x = -1, \quad \sum_{n=1}^{\infty} \frac{(-1)^n n (-1)^n}{n+1}
\]

\[
= \sum_{n=1}^{\infty} \frac{n}{n+1}
\]

\[
\text{diverges}
\]

\[
\text{a}_n = \frac{n}{n+1} \text{ compares to b}_n = 1 \text{ if } n+1 \text{ diverges,}
\]

Since \(b \) diverges, \(\frac{n}{n+1} \) also diverges

So \(x = -1 \) not included

Interval of convergence: \(-1 < x < 1 \)

Plot - conclusion of both endpoints.

Continue problem 6 on page 15.
(b) The graph of \(y = f(x) - g(x) \) passes through the point \((0, -1)\). Find \(y'(0) \) and \(y''(0) \). Determine whether \(y \) has a relative minimum, a relative maximum, or neither at \(x = 0 \). Give a reason for your answer.

\[
y'(0) = f'(0) - g'(0) = -\frac{1}{2} - (-\frac{1}{2}) = 0
\]

\[
y''(0) = f''(0) - g''(0) = \frac{1}{3} - \frac{2}{3} = -\frac{1}{3}
\]

Since \(y'(0) = 0 \) (\(x \) is a crit #) and \(y''(0) > 0 \) (ycme. up @ \(x = 0 \)),
then \(y \) has rel min @ \(x = 0 \).

STOP

END OF EXAM

THE FOLLOWING INSTRUCTIONS APPLY TO THE COVERS OF THE SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE FRONT AND BACK COVERS OF THE SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER LABEL APPEARS IN THE BOX(ES) ON THE COVER(S).
- MAKE SURE YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMS YOU HAVE TAKEN THIS YEAR.
6. Let \(f \) be the function given by \(f(x) = 6e^{-x^3/3} \) for all \(x \).

(a) Find the first four nonzero terms and the general term for the Taylor series for \(f \) about \(x = 0 \).

\[
f(x) = 6 \left(1 + \frac{-x^3}{6} + \frac{(-x^3)^2}{2!} + \frac{(-x^3)^3}{3!} + \cdots + \frac{(-x^3)^n}{n!} + \cdots \right)
\]

\[
= 6 \left(1 - \frac{x^3}{6} + \frac{1}{2 \cdot 3^2} x^6 - \frac{1}{6 \cdot 3^3} x^9 + \cdots + \frac{(-1)^n x^{3n}}{n! 3^n} + \cdots \right)
\]

\[
f(x) = 6 - 2x + \frac{1}{3} x^2 - \frac{1}{27} x^3 + \cdots + \frac{6(-1)^n x^{3n}}{n! 3^n} + \cdots
\]

(b) Let \(g \) be the function given by \(g(x) = \int_0^x f(t) \, dt \). Find the first four nonzero terms and the general term for the Taylor series for \(g \) about \(x = 0 \).

\[
g(x) = \int_0^x f(t) \, dt
\]

\[
= 6x - x^2 + \frac{1}{4} x^3 - \frac{1}{4 \cdot 27} x^4 + \cdots + \frac{6(-1)^n}{n! 3^n} \cdot \frac{1}{n+1} x^{3n+1} + \cdots
\]

\[
= 6x - x^2 + \frac{1}{4} x^3 - \frac{1}{4 \cdot 27} x^4 + \cdots + \frac{6(-1)^n}{(n+1)! 3^n} x^{3n+1} + \cdots
\]
(c) The function \(h(x) = k f'(ax) \) for all \(x \), where \(a \) and \(k \) are constants. The Taylor series for \(h \) about \(x = 0 \) is given by

\[
h(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + \cdots.
\]

Find the values of \(a \) and \(k \).

\[
h(x) = e^x\]

\[
f(x) = 6e^{-\frac{x}{3}}\]

\[
f'(x) = 6e^{-\frac{x}{3}} \cdot -\frac{1}{3} = -2e^{-\frac{x}{3}}\]

\[
h(x) = kf'(ax)\]

\[
e^x = k(-2e^{-ax/3})\]

\[
e^x = -2ke^{-ax/3}\]

\[
1 = -2k \quad \Rightarrow \quad x = -\frac{a}{3}\]

\[
-\frac{1}{2} = k\]

\[
3 = a\]

\[
1 = -\frac{a}{3}\]

\[
-3 = a\]

GO ON TO THE NEXT PAGE.
3. Let h be a function having derivatives of all orders for $x > 0$. Selected values of h and its first four derivatives are indicated in the table above. The function h and these four derivatives are increasing on the interval $1 \leq x \leq 3$.

(a) Write the first-degree Taylor polynomial for h about $x = 2$ and use it to approximate $h(1.9)$. Is this approximation greater than or less than $h(1.9)$? Explain your reasoning.

$$P_1(x) = h(2) + h'(2)(x-2)$$

$$P_1(x) = 80 + 128(x-2)$$

$$h(1.9) \approx P_1(1.9) = 67.2$$

$P_1(1.9)$ is less than $h(1.9)$ since h' is increasing on $[1,3]$.

2 pts - $P_1(x)$

1 pt - $P_1(1.9)$

1 pt - $P(1.9) < h(1.9)$ with reason

Continue problem 3 on page 9.
(b) Write the third-degree Taylor polynomial for \(h \) about \(x = 2 \) and use it to approximate \(h(1.9) \).

\[
P_3(x) = h(2) + h'(2)(x-2) + \frac{h''(2)}{2!}(x-2)^2 + \frac{h'''(2)}{3!}(x-2)^3
\]

\[
P_3(x) = 80 + 128(x-2) + \frac{488}{2!}(x-2)^2 + \frac{488/3}{3!}(x-2)^3
\]

\[
P_3(x) = 80 + 128(x-2) + \frac{488}{2!}(x-2)^2 + \frac{488/3}{3!}(x-2)^3
\]

\[
2pt - P_3(x)
\]

\[
h(1.9) \approx P_3(1.9) = 67.988
\]

\[
1pt - P_3(1.9)
\]

(c) Use the Lagrange error bound to show that the third-degree Taylor polynomial for \(h \) about \(x = 2 \) approximates \(h(1.9) \) with error less than \(3 \times 10^{-4} \).

\[
h''(x) \text{ is inc on } [1.3],
\]

so max on \([1.9, 2]\) is \(\max |h''(c)| \leq \frac{584}{9}\)

\[
|h(1.9) - P_3(1.9)| \leq \frac{\max |h''(c)|}{4!} |x-2|^4
\]

\[
\leq \frac{584/9}{4!} |1.9-2|^4
\]

\[
= 2.704 \times 10^{-4}
\]

which is \(\leq 3 \times 10^{-4} \)

\[
1pt - \text{Lagrange error estimate}
\]

\[
1pt - \text{reasoning}
\]

END OF PART A OF SECTION II

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.
6. Consider the logistic differential equation \(\frac{dy}{dt} = \frac{y}{8}(6 - y) \). Let \(y = f(t) \) be the particular solution to the differential equation with \(f(0) = 8 \).

(a) A slope field for this differential equation is given below. Sketch possible solution curves through the points \((3, 2)\) and \((0, 8)\).

(b) Use Euler's method, starting at \(t = 0 \) with two steps of equal size, to approximate \(f(1) \).

\[
\Delta x = \frac{b-a}{n} = \frac{1-0}{2} = \frac{1}{2}
\]

\[
\begin{array}{c|c|c|c}
(0, 8) & \frac{1}{2} & \frac{dy}{dt} & \frac{dy}{dt} \Delta x \\
\hline
 & & \Delta x & \Delta t = \frac{1-0}{2} = \frac{1}{2} \\
\hline
(0, 8) & \frac{1}{2} & -2 & -2(\frac{1}{2}) = -1 \\
(0.5, 7) & \frac{1}{2} & -\frac{7}{8} & -\frac{7}{8}(\frac{1}{2}) = -\frac{7}{16} \\
(1, 7.5) & \frac{1}{2} & -7 & -7 + 7 = 0 \\
\end{array}
\]

\(f(1) \approx 7 - \frac{7}{16} \)
(c) Write the second-degree Taylor polynomial for \(f \) about \(t = 0 \), and use it to approximate \(f(1) \).

\[P_2(t) = f(0) + f'(0)t + \frac{f''(0)}{2!}t^2 \]

\[f(0) = 8 \]
\[f'(0) = \frac{du}{dt} \bigg|_{t=0} = \frac{8}{8} (6-8) = -2 \]
\[f''(t) = (6-4)(\frac{1}{8} \frac{du}{dt}) + \frac{u}{8} (-1) \frac{du}{dt} \]
\[f''(0) = (6-4)(\frac{1}{8} \frac{8}{8}) + \frac{8}{8} (-1) -2 \]
\[= \frac{3}{2} + 2 \]
\[= \frac{7}{2} \]

\[P_2(t) = 8 - 2t + \frac{7}{2}t^2 \]

\[f(1) \approx P_2(1) = 8 - 2(1) + \frac{7}{2}(1)^2 \]

\[f(1) \approx 29/4 \]

2 pts - \(f''(t) \) or \(\frac{d^2y}{dt^2} \)

1 pt - \(P_2(t) \)

1 pt - \(f(1) \)

(d) What is the range of \(f \) for \(t \geq 0 \)?

Range for \(t \geq 0 \), \((6, \infty]\)
6. Let f be the function given by $f(x) = \frac{2x}{1 + x^2}$.

(a) Write the first four nonzero terms and the general term of the Taylor series for f about $x = 0$.

$$\frac{1}{1-x} = 1 + x + x^2 + \cdots + x^n + \cdots$$
$$\frac{1}{1-(-x^2)} = 1 + (-x^2) + (-x^2)^2 + (-x^2)^3 + \cdots + (-x^2)^n + \cdots$$
$$\frac{1}{1+x^2} = 1 = x^2 + x^4 - x^6 + \cdots + (-x^2)^n + \cdots$$
$$\frac{2x}{1+x^2} = 2x - 2x^3 + 2x^5 - 2x^7 + \cdots + 2x(-x^2)^n + \cdots$$

(b) Does the series found in part (a), when evaluated at $x = 1$, converge to $f(1)$? Explain why or why not.

$$f(x) = \sum_{n=0}^{\infty} (-1)^n 2x^{2n+1}$$
$$f(1) = \sum_{n=0}^{\infty} (-1)^n 2(1)^{2n+1}$$
$$= \sum_{n=0}^{\infty} 2(-1)^n$$

* n^{th} term test *

$$\lim_{n \to \infty} 2(-1)^n \neq 0 \therefore \text{series diverges}$$

Series does NOT converge when evaluated at $x = 1$
(c) The derivative of \(\ln(1 + x^2) \) is \(\frac{2x}{1 + x^2} \). Write the first four nonzero terms of the Taylor series for
\[\ln(1 + x^2) \] about \(x = 0 \).

\[
\begin{align*}
\frac{d}{dx} \ln(1 + x^2) &= \int \frac{2x}{1 + x^2} \\
\ln(1 + x^2) &= \int \frac{2t}{1 + t^2} dt \\
&= \int (2t - 2t^3 + 2t^5 - 2t^7 + \ldots) dt \\
&= \left(t^2 - \frac{1}{3} t^4 + \frac{1}{5} t^6 - \frac{1}{7} t^8 + \ldots \right) \bigg|_0^x \\
&= x^2 - \frac{1}{3} x^4 + \frac{1}{5} x^6 - \frac{1}{7} x^8 + \ldots
\end{align*}
\]

(d) Use the series found in part (c) to find a rational number \(A \) such that \(|A - \ln \left(\frac{5}{4} \right)| < \frac{1}{100} \). Justify your answer.

\[
\begin{align*}
\ln \left(\frac{5}{4} \right) &= \ln (1 + \frac{1}{4}) \\
&= \ln \left(1 + \left(\frac{1}{2} \right)^2 \right) \\
&= \left(\frac{1}{2} \right)^2 - \frac{1}{2} \left(\frac{1}{2} \right)^4 + \frac{1}{3} \left(\frac{1}{2} \right)^6 - \frac{1}{4} \left(\frac{1}{2} \right)^8 + \ldots \\
&= \frac{1}{4} - \frac{1}{16} + \frac{1}{48} - \frac{1}{128} + \ldots \\
&= \text{max of remainder}
\end{align*}
\]

\[
\begin{align*}
|A - \ln \left(\frac{5}{4} \right)| &\leq \frac{1}{5} \left(\frac{1}{2} \right)^6 \\
&= \frac{1}{5} \left(\frac{1}{64} \right) \\
&= \frac{1}{192} < \frac{1}{100}
\end{align*}
\]