AP Calculus - Final Review Sheet

When you see the words
This is what you think of doing

1. Find the zeros
2. Find equation of the line tangent to $f(x)$ at (a, b)
3. Find equation of the line normal to $f(x)$ at (a, b)
4. Show that $f(x)$ is even
5. Show that $f(x)$ is odd
6. Find the interval where $f(x)$ is increasing
7. Find interval where the slope of $f(x)$ is increasing
8. Find the minimum value of a function
9. Find the minimum slope of a function
10. Find critical values
11. Find inflection points
12. Show that $\lim _{x \rightarrow a} f(x)$ exists
13. Show that $f(x)$ is continuous
14. Find vertical asymptotes of $f(x)$
15. Find horizontal asymptotes of $f(x)$

16. Find the average rate of change of $f(x)$ on $[a, b]$	
17. Find instantaneous rate of change of $f(x)$ at a	
18. Find the average value of $f(x)$ on $[a, b]$	
19. Find the absolute maximum of $f(x)$ on $[a, b]$	
20. Show that a piecewise function is differentiable at the point a where the function rule splits	
21. Given $s(t)$ (position function), find $v(t)$	
22. Given $v(t)$, find how far a particle travels on $[a, b]$	
23. Find the average velocity of a particle on $[a, b]$	
24. Given $v(t)$, determine if a particle is speeding up at $t=k$	
25. Given $v(t)$ and $s(0)$, find $s(t)$	
26. Show that Rolle's Theorem holds on $[a, b]$	
27. Show that Mean Value Theorem holds on [a,b]	
28. Find domain of $f(x)$	
29. Find range of $f(x)$ on $[a, b]$	
30. Find range of $f(x)$ on $(-\infty, \infty)$	
31. Find $f^{\prime}(x)$ by definition	
32. Find derivative of inverse to $f(x)$ at $x=a$	

33. y is increasing proportionally to y	
34. Find the line $x=c$ that divides the area under $f(x)$ on $[a, b]$ to two equal areas	
35. $\frac{d}{d x} \int_{a}^{x} f(t) d t=$	
36. $\frac{d}{d x} \int_{a}^{4} f(t) d t$	
37. The rate of change of population is \ldots	
38. The line $y=m x+b$ is tangent to $f(x)$ at (a, b)	
39. Find area using left Riemann sums	
40. Find area using right Riemann sums	
49. Approximate the value of $f(0.1)$ by using the	
tangent line to f at $x=0$	
41. Find area using midpoint rectangles	
48. Find the minimum acceleration given $v(t)$	
44. Find where the tangent line to $f(x)$ is vertical	
42. Find area using trapezoids	
43. Solve the differential equation \ldots	
x-axis are squares	
46 $\int_{a}^{x} f(t) d t$	

50. Given the value of $f(a)$ and the fact that the antiderivative of f is F, find $F(b)$
51. Find the derivative of $f(g(x))$
52. Given $\int_{a}^{b} f(x) d x$, find $\int_{a}^{b}[f(x)+k] d x$
53. Given a picture of $f^{\prime}(x)$, find where $f(x)$ is increasing
54. Given $v(t)$ and $s(0)$, find the greatest distance from the origin of a particle on $[a, b]$
55. Given a water tank with g gallons initially being filled at the rate of $F(t)$ gallons $/ \mathrm{min}$ and emptied at the rate of $E(t)$ gallons $/ \mathrm{min}$ on $\left[t_{1}, t_{2}\right]$, find
a) the amount of water in the tank at m minutes
56. b) the rate the water amount is changing at m
57. c) the time when the water is at a minimum
58. Given a chart of x and $f(x)$ on selected values
between a and b, estimate $f^{\prime}(c)$ where c is between a and b .
59. Given $\frac{d y}{d x}$, draw a slope field
60. Find the area between curves $f(x), g(x)$ on $[a, b]$
61. Find the volume if the area between $f(x), g(x)$ is rotated about the x-axis

BC Problems

62. Find $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ if $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=0$
63. Find $\int_{0}^{\infty} f(x) d x$
64. $\frac{d P}{d t}=\frac{k}{M} P(M-P)$ or $\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)$
65. Find $\int \frac{d x}{x^{2}+a x+b}$ where $x^{2}+a x+b$ factors
66. The position vector of a particle moving in the plane is $r(t)=\langle x(t), y(t)\rangle$
a) Find the velocity.
67. b) Find the acceleration.
68. c) Find the speed.
69. a) Given the velocity vector $v(t)=\langle x(t), y(t)\rangle$ and position at time 0 , find the position vector.
70. b) When does the particle stop?
71. c) Find the slope of the tangent line to the vector at t_{1}.
72. Find the area inside the polar curve $r=f(\theta)$.
73. Find the slope of the tangent line to the polar curve $r=f(\theta)$.
74. Use Euler's method to approximate $f(1.2)$ given $\frac{d y}{d x},\left(x_{0}, y_{0}\right)=(1,1)$, and $\Delta x=0.1$
75. Is the Euler's approximation an underestimate or an overestimate?
76. Find $\int x^{n} e^{a x} d x$ where a, n are integers
77. Write a series for $x^{n} \cos x$ where n is an integer
78. Write a series for $\ln (1+x)$ centered at $x=0$.
79. $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if.....
80. If $f(x)=2+6 x+18 x^{2}+54 x^{3}+\ldots$, find $f\left(-\frac{1}{2}\right)$
81. Find the interval of convergence of a series.
82. Let S_{4} be the sum of the first 4 terms of an alternating series for $f(x)$. Approximate $\left|f(x)-S_{4}\right|$
83. Suppose $f^{(n)}(x)=\frac{(n+1) n!}{2^{n}}$. Write the first four terms and the general term of a series for $f(x)$ centered at $x=c$
84. Given a Taylor series, find the Lagrange form of the remainder for the $4^{\text {th }}$ term.
85. $f(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
86. $f(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\ldots$
87. $f(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\ldots$
88. Find $\int(\sin x)^{m}(\cos x)^{n} d x$ where m and n are integers
89. Given $x=f(t), y=g(t)$, find $\frac{d y}{d x}$
90. Given $x=f(t), y=g(t)$, find $\frac{d^{2} y}{d x^{2}}$
91. Given $f(x)$, find arc length on $[a, b]$
92. $x=f(t), y=g(t)$, find arc length on $\left[t_{1}, t_{2}\right]$
93. Find horizontal tangents to a polar curve $r=f(\theta)$
94. Find vertical tangents to a polar curve $r=f(\theta)$
95. Find the volume when the area between $y=f(x), x=0, y=0$ is rotated about the y-axis.
96. Given a set of points, estimate the volume under the curve using Simpson's rule.
