AP Calculus – Final Review Sheet

When you see the words	This is what you think of doing
1. Find the zeros	Set function = 0, factor or use quadratic equation if
	quadratic, graph to find zeros on calculator
2. Find equation of the line tangent to $f(x)$ on $[a,b]$	Take derivative - $f'(a) = m$ and use
	$y - y_1 = m(x - x_1)$
3. Find equation of the line normal to $f(x)$ on $[a,b]$	Same as above but $m = \frac{-1}{(n-1)^2}$
	f'(a)
4. Show that $f(x)$ is even	Show that $f(-x) = f(x)$ - symmetric to y-axis
5. Show that $f(x)$ is odd	Show that $f(-x) = -f(x)$ - symmetric to origin
6. Find the interval where $f(x)$ is increasing	Find $f'(x)$, set both numerator and denominator to
	zero to find critical points, make sign chart of $f'(x)$
	and determine where it is positive.
7. Find interval where the slope of $f(x)$ is increasing	Find the derivative of $f'(x) = f''(x)$, set both
	numerator and denominator to zero to find critical
	points, make sign chart of $f''(x)$ and determine where
	it is positive.
8. Find the minimum value of a function	Make a sign chart of $f'(x)$, find all relative minimums
	and plug those values back into $f(x)$ and choose the
	smallest.
9. Find the minimum slope of a function	Make a sign chart of the derivative of $f'(x) = f''(x)$,
	find all relative minimums and plug those values back
	into $f'(x)$ and choose the smallest.
10. Find critical values	Express $f'(x)$ as a fraction and set both numerator
	and denominator equal to zero.
11. Find inflection points	Express $f''(x)$ as a fraction and set both numerator
	and denominator equal to zero. Make sign chart of
	f''(x) to find where $f''(x)$ changes sign. (+ to - or -
	to +)
12. Show that $\lim_{x \to a} f(x)$ exists	Show that $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$
13. Show that $f(x)$ is continuous	Show that 1) $\lim_{x \to a} f(x)$ exists $(\lim_{x \to a} f(x) = \lim_{x \to a} f(x))$
	2) $f(a)$ exists
	3) $\lim_{x \to a} f(x) = f(a)$
	$\sum_{x \to a} f(x) = f(x)$
14. Find vertical asymptotes of $f(x)$	Do all factor/cancel of $f(x)$ and set denominator = 0
15. Find horizontal asymptotes of $f(x)$	Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to\infty} f(x)$
16. Find the average rate of change of $f(x)$ on $[a,b]$	Find f(b) - f(a)
	Find $\frac{b-a}{b-a}$
17. Find instantaneous rate of change of $f(x)$ at <i>a</i>	Find $f'(a)$

18. Find the average value of $f(x)$ on $[a,b]$	$\int_{a}^{b} f(x) dx$
	Find $\frac{a}{b-a}$
19. Find the absolute maximum of $f(x)$ on $[a,b]$	Make a sign chart of $f'(x)$, find all relative
	maximums and plug those values back into $f(x)$ as
	well as finding $f(a)$ and $f(b)$ and choose the largest.
20. Show that a piecewise function is differentiable	First, be sure that the function is continuous at $x = a$.
at the point <i>a</i> where the function rule splits	Take the derivative of each piece and show that
	$\lim_{x \to a^-} f'(x) = \lim_{x \to a^+} f'(x)$
21. Given $s(t)$ (position function), find $v(t)$	Find $v(t) = s'(t)$
22. Given $v(t)$, find how far a particle travels on $[a,b]$	Find $\int_{a}^{b} v(t) dt$
23. Find the average velocity of a particle on $[a,b]$	
	$\int v(t) dt s(b) - s(a)$
	Find $\frac{a}{b-a} = \frac{b-a}{b-a}$
24. Given $v(t)$, determine if a particle is speeding up	Find $v(k)$ and $a(k)$. Multiply their signs. If both
at $t = k$	positive, the particle is speeding up, if different signs,
	then the particle is slowing down.
25. Given $v(t)$ and $s(0)$, find $s(t)$	$s(t) = \int v(t) dt + C$ Plug in $t = 0$ to find C
26. Show that Rolle's Theorem holds on $[a,b]$	Show that f is continuous and differentiable on the
	interval. If $f(a) = f(b)$, then find some c in $[a,b]$
	such that $f'(c) = 0$.
27. Show that Mean Value Theorem holds on $[a,b]$	Show that f is continuous and differentiable on the
	interval. Then find some c such that
	$f'(c) = \frac{f(b) - f(a)}{a}.$
	b-a
28. Find domain of $f(x)$	Assume domain is $(-\infty,\infty)$. Restrictable domains:
	denominators $\neq 0$, square roots of only non negative
29. Find range of $f(x)$ on $[a, b]$	I Use max/min techniques to rind relative max/mins
29. This range of $f(x)$ on $[a,b]$	Then examine $f(a) f(b)$
30 Find range of $f(x)$ on $(-\infty,\infty)$	Use max/min techniques to rind relative max/mins
So. This range of $f(x)$ on $(-\infty,\infty)$	Then examine $\lim_{x \to \infty} f(x)$
21 Find C'() has definition	$\sum_{X \to \pm \infty} c(X)$
51. Find $f(x)$ by definition	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ or
	$f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$
32. Find derivative of inverse to $f(x)$ at $x = a$	Interchange x with y. Solve for $\frac{dy}{dx}$ implicitly (in terms
	of y). Plug your x value into the inverse relation and
	solve for y. Finally, plug that y into your $\frac{dy}{dx}$.

33. <i>y</i> is increasing proportionally to y	$\frac{dy}{dt} = ky$ translating to $y = Ce^{kt}$
34. Find the line $x = c$ that divides the area under $f(x)$ on $[a,b]$ to two equal areas	$\int_{a}^{c} f(x)dx = \int_{c}^{b} f(x)dx$
$35. \frac{d}{dx} \int_{a}^{x} f(t) dt =$	2^{nd} FTC: Answer is $f(x)$
36. $\frac{d}{dx}\int_{a}^{u} f(t)dt$	2^{nd} FTC: Answer is $f(u)\frac{du}{dx}$
37. The rate of change of population is	$\frac{dP}{dt} = \dots$
38. The line $y = mx + b$ is tangent to $f(x)$ at (x_1, y_1)	Two relationships are true. The two functions share the same slope $(m = f'(x))$ and share the same y value at x_1 .
39. Find area using left Riemann sums	$A = base[x_0 + x_1 + x_2 + \dots + x_{n-1}]$
40. Find area using right Riemann sums	$A = base[x_1 + x_2 + x_3 + + x_n]$
41. Find area using midpoint rectangles	Typically done with a table of values. Be sure to use only values that are given. If you are given 6 sets of points, you can only do 3 midpoint rectangles.
42. Find area using trapezoids	$A = \frac{base}{2} [x_0 + 2x_1 + 2x_2 + \dots + 2x_{n-1} + x_n]$ This formula only works when the base is the same. If not, you have to do individual trapezoids
43. Solve the differential equation	Separate the variables $-x$ on one side, y on the other. The dx and dy must all be upstairs.
44. Meaning of $\int_{a}^{x} f(t) dt$	The accumulation function – accumulated area under the function $f(x)$ starting at some constant <i>a</i> and ending at <i>x</i> .
45. Given a base, cross sections perpendicular to the <i>x</i> -axis are squares	The area between the curves typically is the base of your square. So the volume is $\int_{a}^{b} (base^{2}) dx$
46. Find where the tangent line to $f(x)$ is horizontal	Write $f'(x)$ as a fraction. Set the numerator equal to zero.
47. Find where the tangent line to $f(x)$ is vertical	Write $f'(x)$ as a fraction. Set the denominator equal to zero.
48. Find the minimum acceleration given $v(t)$	First find the acceleration $a(t) = v'(t)$. Then minimize the acceleration by examining $a'(t)$.
49. Approximate the value of $f(0.1)$ by using the tangent line to f at $x = 0$	Find the equation of the tangent line to f using $y - y_1 = m(x - x_1)$ where $m = f'(0)$ and the point is $(0, f(0))$. Then plug in 0.1 into this line being sure to use an approximate (\approx) sign.

50. Given the value of $F(a)$ and the fact that the anti-	Usually, this problem contains an antiderivative you
derivative of f is F, find $F(b)$ 1	cannot take. Utilize the fact that if $F(x)$ is the
	antiderivative of f, then $\int_{a}^{b} F(x)dx = F(b) - F(a)$. So
	solve for $F(b)$ using the calculator to find the definite
	integral.
51. Find the derivative of $f(g(x))$	$f'(g(x)) \cdot g'(x)$
52. Given $\int_{a}^{b} f(x) dx$, find $\int_{a}^{b} [f(x)+k] dx$	$\int_{a}^{b} \left[f(x) + k \right] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} k dx$
53. Given a picture of $f'(x)$, find where $f(x)$ is	Make a sign chart of $f'(x)$ and determine where
increasing	f'(x) is positive.
54. Given $v(t)$ and $s(0)$, find the greatest distance	Generate a sign chart of $v(t)$ to find turning points.
from the origin of a particle on $[a,b]$	Then integrate $v(t)$ using $s(0)$ to find the constant to
	find $s(t)$. Finally, find $s(all turning points)$ which will
	give you the distance from your starting point. Adjust
55 Civen a water tank with a collong initially being	for the origin.
filled at the rate of $F(t)$ gallons/min and emptied	t ₂
at the rate of $F(t)$ sallons/min on $[t, t_i]$ find	$g + \int (F(t) - E(t))dt$
a) the amount of water in the tank at m minutes	ť
56. b) the rate the water amount is changing at m	$d \int_{0}^{m} (-(1) - (1)) dx = (-1) - (-1)$
	$\frac{d}{dt}\int_{t} (F(t) - E(t))dt = F(m) - E(m)$
57. c) the time when the water is at a minimum	F(m) - E(m) = 0, testing the endpoints as well.
58. Given a chart of x and $f(x)$ on selected values	Straddle c , using a value k greater than c and a value h
between a and b, estimate $f'(c)$ where c is	less than c. so $f'(c) \approx \frac{f(k) - f(h)}{dk}$
between <i>a</i> and b.	k-h
59. Given $\frac{dy}{dx}$, draw a slope field	Use the given points and plug them into $\frac{dy}{dx}$, drawing
u.x	little lines with the indicated slopes at the points.
60. Find the area between curves $f(x), g(x)$ on $[a,b]$	$A = \int_{a}^{b} [f(x) - g(x)] dx$, assuming that the <i>f</i> curve is
	above the g curve.
61. Find the volume if the area between $f(x), g(x)$ is	$A = \int_{a}^{b} \left[(f(x))^{2} - (g(x))^{2} \right] dx$ assuming that the f curve is
	above the g curve.
	1

BC Problems

62. Find $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ if $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$	Use L'Hopital's Rule.
63. Find $\int_0^\infty f(x) dx$	$\lim_{h\to\infty}\int_0^h f(x)dx$
64. $\frac{dP}{dt} = \frac{k}{dt}P(M-P)$ or $\frac{dP}{dt} = kP\left(1-\frac{P}{dt}\right)$	Signals logistic growth.
dt M dt (M)	$\lim_{t\to\infty}\frac{dP}{dt}=0 \Rightarrow M=P$
65. Find $\int \frac{dx}{x^2 + ax + b}$ where $x^2 + ax + b$ factors	Factor denominator and use Heaviside partial fraction technique.
66. The position vector of a particle moving $(1, 1)$	
in the plane is $r(t) = \langle x(t), y(t) \rangle$	$\mathbf{v}(t) = \langle \mathbf{x}(t), \mathbf{y}(t) \rangle$
a) Find the velocity.67 b) Find the acceleration	$2(t) - \sqrt{t}(t) \sqrt{t}(t)$
	$a(t) = \langle x(t), y(t) \rangle$
68. c) Find the speed.	$\left\ \mathbf{v}(t) \right\ = \sqrt{\left[\mathbf{x}'(t) \right]^2 + \left[\mathbf{y}'(t) \right]^2}$
69. a) Given the velocity vector	$s(t) = \int x(t) dt + \int y(t) dt + C$
$v(t) = \left\langle x(t), y(t) \right\rangle$	Use $s(0)$ to find C, remembering it is a vector.
and position at time 0, find the position vector	
70. b) When does the particle stop?	$v(t) = 0 \rightarrow x(t) = 0 \text{ AND } y(t) = 0$
71. c) Find the slope of the tangent line to the vector at $t_{1.}$	This is the acceleration vector at t_1 .
72. Find the area inside the polar curve	$1^{\theta} \int \mathbf{\Gamma}_{\alpha}(\alpha) \mathbf{T}_{\alpha}(\alpha)$
$r = f(\theta).$	$A = \frac{1}{2} \int_{\theta_1} \left[f(\theta) \right] d\theta$
72 Find the slope of the tangent line to the	
polar curve $r = f(\theta)$.	$dy \frac{dy}{d\theta}$
	$x = r \cos \theta, y = r \sin \theta \Rightarrow \frac{1}{dx} = \frac{dx}{dx}$
	d heta
74. Use Euler's method to approximate	$dy = \frac{dy}{dx} (\Delta x) y = y + dy$
$\begin{cases} f(1.2) \text{ given} & \frac{dy}{dx}, (x_0, y_0) = (1,1), \text{ and} \\ \Delta x = 0, 1 \end{cases}$	$\int dx \int y_{\text{new}} - y_{\text{old}} + dy$
75. Is the Euler's approximation an	$dy = d^2 y$
underestimate or an overestimate?	Look at sign of $\frac{1}{dx}$ and $\frac{1}{dx^2}$ in the interval. This gives you
	increasing.decreasing/concavity. Draw picture to ascertain

	answer.
76. Find $\int x^n e^{ax} dx$ where <i>a</i> , <i>n</i> are integers	Integration by parts, $\int u dv = uv - \int v du + C$
77. Write a series for $x^n \cos x$ where <i>n</i> is an integer	$\cos x = 1 - \frac{x^2}{21} + \frac{x^4}{41} - \frac{x^6}{61} + \dots$
	Multiply each term by x^n
78. Write a series for $\ln(1+x)$ centered at	Find Maclaurin polynomial:
x = 0.	$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n$
79. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if	<i>p</i> >1
80. If $f(x) = 2 + 6x + 18x^2 + 54x^3 +,$ find	Plug in and factor. This will be a geometric series:
$f\left(-\frac{1}{2}\right)$	$\sum_{n=1}^{\infty} ar^n = \underline{a}$
	$\sum_{n=0}^{\infty}$ 1-r
81 Find the interval of convergence of a	Use a test (usually the ratio) to find the interval and then test
series.	convergence at the endpoints.
82. Let S_4 be the sum of the first 4 terms of an	This is the error for the 4 th term of an alternating series which
alternating series for $f(x)$. Approximate	is simply the 5 th term. It will be positive since you are looking
$\left f(x)-S_{4}\right $	for an absolute value.
(n+1) n! $(n+1) n!$	You are being given a formula for the derivative of $f(x)$.
83. Suppose $f^{(n)}(x) = \frac{1}{2^n}$. Write the	$f''(c) = f^{(n)}(c)$
first four terms and the general term of a series for $f(x)$ centered at $x = c$	$f(x) = f(c) + f'(c)(x-c) + \frac{f'(c)}{2!}(x-c)^{2} + \dots + \frac{f'(c)}{n!}(x-c)^{n}$
84. Given a Taylor series, find the Lagrange	You need to determine the largest value of the 5 th derivative of
form of the remainder for the n^{th} term	f at some value of z . Usually you are told this. Then:
where <i>n</i> is an integer at $x = c$.	$B(x) = \frac{f^{(n+1)}(z)}{(x-c)^{n+1}}$
	(n+1)!
85. $f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	$f(x) = e^x$
x^{3} x^{5} $(-1)^{n} x^{2n+1}$	$f(x) = \sin x$
86. $f(x) = x - \frac{1}{3!} + \frac{1}{5!} + \dots + \frac{1}{(2n+1)!} + \dots$	
$x^2 y^4 y^6 (-1)^n x^{2n}$	$f(x) = \cos x$
87. $f(x) = 1 - \frac{x}{2!} + \frac{x}{4!} - \frac{x}{6!} + \dots + \frac{(-1)^{n}}{(2n)!} + \dots$	
88. Find $\int (\sin x)^m (\cos x)^n dx$ where <i>m</i> and <i>n</i>	If m is odd and positive, save a sine and convert everything
are integers	else to cosine. The sine will be the <i>au</i> . If n is odd and positive, save a cosine and convert everything else to sine. The cosine
	will be the du . Otherwise use the fact that:

	$\sin^2 x = \frac{1 - \cos^2 x}{2}$ and $\cos^2 x = \frac{1 + \cos^2 x}{2}$
89. Given $x = f(t)$, $y = g(t)$, find $\frac{dy}{dx}$	$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
90. Given $x = f(t)$, $y = g(t)$, find $\frac{d^2 y}{dx^2}$	$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left[\frac{dy}{dx} \right] = \frac{\frac{d}{dt} \left[\frac{dy}{dx} \right]}{\frac{dx}{dt}}$
91. Given $f(x)$, find arc length on $[a,b]$	$L = \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^{2}} dx$
92. $x = f(t)$, $y = g(t)$, find arc length on	
$\begin{bmatrix} t_1, t_2 \end{bmatrix}$	$L = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
93. Find horizontal tangents to a polar curve	$x = r\cos\theta, y = r\sin\theta$
$r = f\left(\theta\right)$	Find where $r\sin\theta = 0$ where $r\cos\theta \neq 0$
94. Find vertical tangents to a polar curve	$x = r\cos\theta, y = r\sin\theta$
$r = f(\theta)$	Find where $r\cos\theta = 0$ where $r\sin\theta \neq 0$
95. Find the volume when the area between $y = f(x), x = 0, y = 0$ is rotated about the y-axis.	Shell method: $V = 2\pi \int_{0}^{b} radius \cdot height dx$ where b is the root.
96. Given a set of points, estimate the volume under the curve using Simpson's rule on $[a,b]$.	$A \approx \frac{b-a}{3n} \left[y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 4y_{n-1} + y_n \right]$
97. Find the dot product: $\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle$	$\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle = u_1 v_1 + u_2 v_2$
98. Multiply two vectors:	You get a scalar.