When you see the words

1. Find the zeros	Set function $=0$, factor or use quadratic equation if quadratic, graph to find zeros on calculator
2. Find equation of the line tangent to $f(x)$ on $[a, b]$	Take derivative $-f^{\prime}(a)=m$ and use $y-y_{1}=m\left(x-x_{1}\right)$
3. Find equation of the line normal to $f(x)$ on $[a, b]$	Same as above but $m=\frac{-1}{f^{\prime}(a)}$
4. Show that $f(x)$ is even	Show that $f(-x)=f(x)$ - symmetric to y-axis
5. Show that $f(x)$ is odd	Show that $f(-x)=-f(x)$ - symmetric to origin
6. Find the interval where $f(x)$ is increasing	Find $f^{\prime}(x)$, set both numerator and denominator to zero to find critical points, make sign chart of $f^{\prime}(x)$ and determine where it is positive.
7. Find interval where the slope of $f(x)$ is increasing	Find the derivative of $f^{\prime}(x)=f^{\prime \prime}(x)$, set both numerator and denominator to zero to find critical points, make sign chart of $f^{\prime \prime}(x)$ and determine where it is positive.
8. Find the minimum value of a function	Make a sign chart of $f^{\prime}(x)$, find all relative minimums and plug those values back into $f(x)$ and choose the smallest.
9. Find the minimum slope of a function	Make a sign chart of the derivative of $f^{\prime}(x)=f^{\prime \prime}(x)$, find all relative minimums and plug those values back into $f^{\prime}(x)$ and choose the smallest.
10. Find critical values	Express $f^{\prime}(x)$ as a fraction and set both numerator and denominator equal to zero.
11. Find inflection points	Express $f^{\prime \prime}(x)$ as a fraction and set both numerator and denominator equal to zero. Make sign chart of $f^{\prime \prime}(x)$ to find where $f^{\prime \prime}(x)$ changes sign. (+ to - or to +)
12. Show that $\lim _{x \rightarrow a} f(x)$ exists	Show that $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$
13. Show that $f(x)$ is continuous	Show that 1) $\lim _{x \rightarrow a} f(x)$ exists $\left(\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)\right)$ 2) $f(a)$ exists 3) $\lim _{x \rightarrow a} f(x)=f(a)$
14. Find vertical asymptotes of $f(x)$	Do all factor/cancel of $f(x)$ and set denominator $=0$
15. Find horizontal asymptotes of $f(x)$	Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$
16. Find the average rate of change of $f(x)$ on $[a, b]$	Find $\frac{f(b)-f(a)}{b-a}$
17. Find instantaneous rate of change of $f(x)$ at a	Find $f^{\prime}(a)$

18. Find the average value of $f(x)$ on $[a, b]$	$\text { Find } \frac{\int_{a}^{b} f(x) d x}{b-a}$
19. Find the absolute maximum of $f(x)$ on $[a, b]$	Make a sign chart of $f^{\prime}(x)$, find all relative maximums and plug those values back into $f(x)$ as well as finding $f(a)$ and $f(b)$ and choose the largest.
20. Show that a piecewise function is differentiable at the point a where the function rule splits	First, be sure that the function is continuous at $x=a$. Take the derivative of each piece and show that $\lim _{x \rightarrow a^{-}} f^{\prime}(x)=\lim _{x \rightarrow a+} f^{\prime}(x)$
21. Given $s(t)$ (position function), find $v(t)$	Find $v(t)=s^{\prime}(t)$
22. Given $v(t)$, find how far a particle travels on $[a, b]$	Find $\int_{a}^{b}\|v(t)\| d t$
23. Find the average velocity of a particle on $[a, b]$	$\text { Find } \frac{\int_{a}^{b} v(t) d t}{b-a}=\frac{s(b)-s(a)}{b-a}$
24. Given $v(t)$, determine if a particle is speeding up at $t=k$	Find $v(k)$ and $a(k)$. Multiply their signs. If both positive, the particle is speeding up, if different signs, then the particle is slowing down.
25. Given $v(t)$ and $s(0)$, find $s(t)$	$s(t)=\int v(t) d t+C \quad$ Plug in $t=0$ to find C
26. Show that Rolle's Theorem holds on $[a, b]$	Show that f is continuous and differentiable on the interval. If $f(a)=f(b)$, then find some c in $[a, b]$ such that $f^{\prime}(c)=0$.
27. Show that Mean Value Theorem holds on $[a, b]$	Show that f is continuous and differentiable on the interval. Then find some c such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
28. Find domain of $f(x)$	Assume domain is $(-\infty, \infty)$. Restrictable domains: denominators $\neq 0$, square roots of only non negative numbers, \log or \ln of only positive numbers.
29. Find range of $f(x)$ on $[a, b]$	Use max/min techniques to rind relative max/mins. Then examine $f(a), f(b)$
30. Find range of $f(x)$ on $(-\infty, \infty)$	Use max/min techniques to rind relative max/mins. Then examine $\lim _{x \rightarrow \pm \infty} f(x)$.
31. Find $f^{\prime}(x)$ by definition	$\begin{aligned} & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { or } \\ & f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \end{aligned}$
32. Find derivative of inverse to $f(x)$ at $x=a$	Interchange x with y. Solve for $\frac{d y}{d x}$ implicitly (in terms of y). Plug your x value into the inverse relation and solve for y. Finally, plug that y into your $\frac{d y}{d x}$.

33. y is increasing proportionally to y	$\frac{d y}{d t}=k y$ translating to $y=C e^{k t}$
34. Find the line $x=c$ that divides the area under $f(x)$ on $[a, b]$ to two equal areas	$\int_{a}^{c} f(x) d x=\int_{c}^{b} f(x) d x$
35. $\frac{d}{d x} \int_{a}^{x} f(t) d t=$	$2^{\text {nd }}$ FTC: Answer is $f(x)$
$\text { 36. } \frac{d}{d x} \int_{a}^{4} f(t) d t$	$2^{\text {nd }}$ FTC: Answer is $f(u) \frac{d u}{d x}$
37. The rate of change of population is ...	$\frac{d P}{d t}=\ldots$
38. The line $y=m x+b$ is tangent to $f(x)$ at $\left(x_{1}, y_{1}\right)$	Two relationships are true. The two functions share the same slope ($m=f^{\prime}(x)$) and share the same y value at x_{1}.
39. Find area using left Riemann sums	$A=\operatorname{base}\left[x_{0}+x_{1}+x_{2}+\ldots+x_{n-1}\right]$
40. Find area using right Riemann sums	$A=\operatorname{base}\left[x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right]$
41. Find area using midpoint rectangles	Typically done with a table of values. Be sure to use only values that are given. If you are given 6 sets of points, you can only do 3 midpoint rectangles.
42. Find area using trapezoids	$A=\frac{\text { base }}{2}\left[x_{0}+2 x_{1}+2 x_{2}+\ldots+2 x_{n-1}+x_{n}\right]$ This formula only works when the base is the same. If not, you have to do individual trapezoids.
43. Solve the differential equation ...	Separate the variables - x on one side, y on the other. The $d x$ and $d y$ must all be upstairs.
44. Meaning of $\int_{a}^{x} f(t) d t$	The accumulation function - accumulated area under the function $f(x)$ starting at some constant a and ending at x.
45. Given a base, cross sections perpendicular to the x-axis are squares	The area between the curves typically is the base of your square. So the volume is $\int_{a}^{b}\left(\right.$ base $\left.^{2}\right) d x$
46. Find where the tangent line to $f(x)$ is horizontal	Write $f^{\prime}(x)$ as a fraction. Set the numerator equal to zero.
47. Find where the tangent line to $f(x)$ is vertical	Write $f^{\prime}(x)$ as a fraction. Set the denominator equal to zero.
48. Find the minimum acceleration given $v(t)$	First find the acceleration $a(t)=v^{\prime}(t)$. Then minimize the acceleration by examining $a^{\prime}(t)$.
49. Approximate the value of $f(0.1)$ by using the tangent line to f at $x=0$	Find the equation of the tangent line to f using $y-y_{1}=m\left(x-x_{1}\right)$ where $m=f^{\prime}(0)$ and the point is $(0, f(0))$. Then plug in 0.1 into this line being sure to use an approximate (\approx) sign.

50. Given the value of $F(a)$ and the fact that the antiderivative of f is F, find $F(b) 1$	Usually, this problem contains an antiderivative you cannot take. Utilize the fact that if $F(x)$ is the antiderivative of f, then $\int_{a}^{b} F(x) d x=F(b)-F(a)$. So solve for $F(b)$ using the calculator to find the definite integral.
51. Find the derivative of $f(g(x))$	$f^{\prime}(g(x)) \cdot g^{\prime}(x)$
52. Given $\int_{a}^{b} f(x) d x$, find $\int_{a}^{b}[f(x)+k] d x$	$\int_{a}^{b}[f(x)+k] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} k d x$
53. Given a picture of $f^{\prime}(x)$, find where $f(x)$ is increasing	Make a sign chart of $f^{\prime}(x)$ and determine where $f^{\prime}(x)$ is positive.
54. Given $v(t)$ and $s(0)$, find the greatest distance from the origin of a particle on $[a, b]$	Generate a sign chart of $v(t)$ to find turning points. Then integrate $v(t)$ using $s(0)$ to find the constant to find $s(t)$. Finally, find s (all turning points) which will give you the distance from your starting point. Adjust for the origin.
55. Given a water tank with g gallons initially being filled at the rate of $F(t)$ gallons $/ \mathrm{min}$ and emptied at the rate of $E(t)$ gallons $/ \mathrm{min}$ on $\left[t_{1}, t_{2}\right]$, find a) the amount of water in the tank at m minutes	$g+\int_{t}^{t_{2}}(F(t)-E(t)) d t$
56. b) the rate the water amount is changing at m	$\frac{d}{d t} \int_{t}^{m}(F(t)-E(t)) d t=F(m)-E(m)$
57. c) the time when the water is at a minimum	$F(m)-E(m)=0$, testing the endpoints as well.
58. Given a chart of x and $f(x)$ on selected values between a and b, estimate $f^{\prime}(c)$ where c is between a and b .	Straddle c, using a value k greater than c and a value h less than c. so $f^{\prime}(c) \approx \frac{f(k)-f(h)}{k-h}$
59. Given $\frac{d y}{d x}$, draw a slope field	Use the given points and plug them into $\frac{d y}{d x}$, drawing little lines with the indicated slopes at the points.
60. Find the area between curves $f(x), g(x)$ on $[a, b]$	$A=\int_{a}^{b}[f(x)-g(x)] d x$, assuming that the f curve is above the g curve.
61. Find the volume if the area between $f(x), g(x)$ is rotated about the x-axis	$A=\int_{a}^{b}\left[(f(x))^{2}-(g(x))^{2}\right] d x$ assuming that the f curve is above the g curve.

BC Problems

62. Find $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ if $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=0$	Use L'Hopital's Rule.		
63. Find $\int_{0}^{\infty} f(x) d x$	$\lim _{h \rightarrow \infty} \int_{0}^{2} f(x) d x$		
64. $\frac{d P}{d t}=\frac{k}{M} P(M-P)$ or $\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)$	Signals logistic growth. $\lim _{t \rightarrow \infty} \frac{d P}{d t}=0 \Rightarrow M=P$		
65. Find $\int \frac{d x}{x^{2}+a x+b}$ where $x^{2}+a x+b$ factors	Factor denominator and use Heaviside partial fraction technique.		
66. The position vector of a particle moving in the plane is $r(t)=\langle x(t), y(t)\rangle$ a) Find the velocity.	$v(t)=\left\langle\chi(t), y^{\prime}(t)\right\rangle$		
67. b) Find the acceleration.	$a(t)=\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle$		
68. c) Find the speed.	$\\|v(t)\\|=\sqrt{\left[x^{\prime}(t)\right]^{2}+[y(t)]^{2}}$		
69. a) Given the velocity vector $v(t)=\langle x(t), y(t)\rangle$ and position at time 0 , find the position vector.	$s(t)=\int x(t) d t+\int y(t) d t+C$ Use $s(0)$ to find C, remembering it is a vector.		
70. b) When does the particle stop?	$v(t)=0 \rightarrow x(t)=0$ AND $y(t)=0$		
71. c) Find the slope of the tangent line to the vector at t_{1}.	This is the acceleration vector at t_{1}.		
72. Find the area inside the polar curve $r=f(\theta) .$	$A=\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}}[f(\theta)]^{2} d \theta$		
73. Find the slope of the tangent line to the polar curve $r=f(\theta)$.	$x=r \cos \theta, y=r \sin \theta \Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$		
74. Use Euler's method to approximate $f(1.2)$ given $\quad \frac{d y}{d x},\left(x_{0}, y_{0}\right)=(1,1)$, and $\Delta x=0.1$	$d y=\frac{d y}{d x}(\Delta x), y_{\mathrm{new}}=y_{\mathrm{old}}+d y$		
75. Is the Euler's approximation an underestimate or an overestimate?	Look at sign of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in the interval. This gives you increasing.decreasing/concavity. Draw picture to ascertain		

	answer.
76. Find $\int x^{n} e^{a x} d x$ where a, n are integers	Integration by parts, $\int u d v=u v-\int v d u+C$
77. Write a series for $x^{n} \cos x$ where n is an integer	$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$ Multiply each term by x^{n}
78. Write a series for $\ln (1+x)$ centered at $x=0$.	Find Maclaurin polynomial: $P_{n}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n}$
79. $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if.....	$p>1$
80. If $f(x)=2+6 x+18 x^{2}+54 x^{3}+\ldots$, find $f\left(-\frac{1}{2}\right)$	Plug in and factor. This will be a geometric series: $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$
81. Find the interval of convergence of a series.	Use a test (usually the ratio) to find the interval and then test convergence at the endpoints.
82. Let S_{4} be the sum of the first 4 terms of an alternating series for $f(x)$. Approximate $\left\|f(x)-S_{4}\right\|$	This is the error for the $4^{\text {th }}$ term of an alternating series which is simply the $5^{\text {th }}$ term. It will be positive since you are looking for an absolute value.
83. Suppose $f^{(n)}(x)=\frac{(n+1) n!}{2^{n}}$. Write the first four terms and the general term of a series for $f(x)$ centered at $x=c$	You are being given a formula for the derivative of $f(x)$. $f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}$
84. Given a Taylor series, find the Lagrange form of the remainder for the $n^{\text {th }}$ term where n is an integer at $x=c$.	You need to determine the largest value of the $5^{\text {th }}$ derivative of f at some value of z. Usually you are told this. Then: $R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}$
85. $f(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$	$f(x)=e^{x}$
86. $f(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\ldots$	$f(x)=\sin x$
87. $f(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\ldots$	$f(x)=\cos x$
88. Find $\int(\sin x)^{m}(\cos x)^{n} d x$ where m and n are integers	If m is odd and positive, save a sine and convert everything else to cosine. The sine will be the $d u$. If n is odd and positive, save a cosine and convert everything else to sine. The cosine will be the $d u$. Otherwise use the fact that:

	$\sin ^{2} x=\frac{1-\cos 2 x}{2} \text { and } \cos ^{2} x=\frac{1+\cos 2 x}{2}$
89. Given $x=f(t), y=g(t)$, find $\frac{d y}{d x}$	$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
90. Given $x=f(t), y=g(t)$, find $\frac{d^{2} y}{d x^{2}}$	$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{\frac{d x}{d t}}$
91. Given $f(x)$, find arc length on $[a, b]$	$L=\int_{a}^{h} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$
92. $x=f(t), y=g(t)$, find arc length on $\left[t_{1}, t_{2}\right]$	$L=\int_{t_{1}}^{t} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
93. Find horizontal tangents to a polar curve $r=f(\theta)$	$x=r \cos \theta, y=r \sin \theta$ Find where $r \sin \theta=0$ where $r \cos \theta \neq 0$
94. Find vertical tangents to a polar curve $r=f(\theta)$	$x=r \cos \theta, y=r \sin \theta$ Find where $r \cos \theta=0$ where $r \sin \theta \neq 0$
95. Find the volume when the area between $y=f(x), x=0, y=0$ is rotated about the y-axis.	Shell method: $V=2 \pi \int_{0}^{h}$ radius • height $d x$ where b is the root
96. Given a set of points, estimate the volume under the curve using Simpson's rule on $[a, b]$.	$A \approx \frac{b-a}{3 n}\left[y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\ldots+4 y_{n-1}+y_{n}\right]$
97. Find the dot product: $\left\langle u_{1}, u_{2}\right\rangle \cdot\left\langle v_{1}, v_{2}\right\rangle$	$\left\langle u_{1}, u_{2}\right\rangle \cdot\left\langle v_{1}, v_{2}\right\rangle=u_{1} v_{1}+u_{2} v_{2}$
98. Multiply two vectors:	You get a scalar.

