AP[®] Calculus ^{BC} 2010 Free-Response Questions Form B #### The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the College Board is composed of more than 5,700 schools, colleges, universities and other educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and 3,800 colleges through major programs and services in college readiness, college admission, guidance, assessment, financial aid and enrollment. Among its widely recognized programs are the SAT®, the PSAT/NMSQT®, the Advanced Placement Program® (AP®), SpringBoard® and ACCUPLACER®. The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities and concerns. © 2010 The College Board. College Board, ACCUPLACER, Advanced Placement Program, AP, AP Central, SAT, SpringBoard and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service is a trademark owned by the College Board. PSAT/NMSQT is a registered trademark of the College Board and National Merit Scholarship Corporation. All other products and services may be trademarks of their respective owners. Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.com/inquiry/cbpermit.html. Visit the College Board on the Web: www.collegeboard.com. AP Central is the official online home for the AP Program: apcentral.collegeboard.com. # CALCULUS AB SECTION II, Part A Time—45 minutes Number of problems—3 A graphing calculator is required for some problems or parts of problems. - 1. In the figure above, R is the shaded region in the first quadrant bounded by the graph of $y = 4\ln(3 x)$, the horizontal line y = 6, and the vertical line x = 2. - (a) Find the area of R. Do not write beyond this border. Continue problem 1 on page 5. (b) Find the volume of the solid generated when R is revolved about the horizontal line y = 8. (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of the solid. Do not write bayond this border. GO ON TO THE NEXT PAGE. 2. The velocity vector of a particle moving in the xy-plane has components given by $$\frac{dx}{dt} = 14\cos(t^2)\sin(e^t) \text{ and } \frac{dy}{dt} = 1 + 2\sin(t^2), \text{ for } 0 \le t \le 1.5.$$ At time t = 0, the position of the particle is (-2, 3). (a) For 0 < t < 1.5, find all values of t at which the line tangent to the path of the particle is vertical. Do not write beyond this border. (b) Write an equation for the line tangent to the path of the particle at t = 1. (c) Find the speed of the particle at t = 1. (d) Find the acceleration vector of the particle at t = 1. Do not write beyond this border. GO ON TO THE NEXT PAGE. - 3. The figure above shows an aboveground swimming pool in the shape of a cylinder with a radius of 12 feet and a height of 4 feet. The pool contains 1000 cubic feet of water at time t = 0. During the time interval $0 \le t \le 12$ hours, water is pumped into the pool at the rate P(t) cubic feet per hour. The table above gives values of P(t) for selected values of t. During the same time interval, water is leaking from the pool at the rate P(t) cubic feet per hour, where $P(t) = 25e^{-0.05t}$. (Note: The volume t of a cylinder with radius t and height t is given by t is t and t and t is t and t and t are are t and are t and t are t and t are t and t are t and t are t are t and t are t and t are t are t and t are t are t and t are t and t are t are t and t are t are t and t are t and t are t and t are t are t and t are t and t are t are t and t are t and t are t are t and t are t are t and t are t and t are t are t and t are t and t are t are t are t are t are t and t are - (a) Use a midpoint Riemann sum with three subintervals of equal length to approximate the total amount of water that was pumped into the pool during the time interval $0 \le t \le 12$ hours. Show the computations that lead to your answer. (b) Calculate the total amount of water that leaked out of the pool during the time interval $0 \le t \le 12$ hours. (c) Use the results from parts (a) and (b) to approximate the volume of water in the pool at time t = 12 hours. Round your answer to the nearest cubic foot. (d) Find the rate at which the volume of water in the pool is increasing at time t = 8 hours. How fast is the water level in the pool rising at t = 8 hours? Indicate units of measure in both answers. Do not write beyond this border. Do not write beyond this border END OF PART A OF SECTION II IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO. ### NO CALCULATOR ALLOWER ## CALCULUS AB SECTION II, Part B Time—45 minutes Number of problems—3 No calculator is allowed for these problems. - 4. A squirrel starts at building A at time t = 0 and travels along a straight, horizontal wire connected to building B. For $0 \le t \le 18$, the squirrel's velocity is modeled by the piecewise-linear function defined by the graph above. - (a) At what times in the interval 0 < t < 18, if any, does the squirrel change direction? Give a reason for your answer. - (b) At what time in the interval $0 \le t \le 18$ is the squirrel farthest from building A? How far from building A is the squirrel at that time? (c) Find the total distance the squirrel travels during the time interval $0 \le t \le 18$. (d) Write expressions for the squirrel's acceleration a(t), velocity v(t), and distance x(t) from building A that are valid for the time interval 7 < t < 10. Do not write beyond this border. GO ON TO THE NEXT PAGE. (a) Find the absolute maximum value of g on the open interval $(0, \infty)$ if the maximum exists. Find the absolute minimum value of g on the open interval $(0, \infty)$ if the minimum exists. Justify your answers. rite beyond this border. Continue problem 5 on page 13. Do not write beyond this border. GO ON TO THE NEXT PAGE. #### NO CALCITATOR ALLOWEI - 6. The Maclaurin series for the function f is given by $f(x) = \sum_{n=2}^{\infty} \frac{(-1)^n (2x)^n}{n-1}$ on its interval of convergence. - (a) Find the interval of convergence for the Maclaurin series of f. Justify your answer. Do not write beyond this border. Continue problem 6 on page 15. (b) Show that y = f(x) is a solution to the differential equation $xy' - y = \frac{4x^2}{1+2x}$ for |x| < R, where R is the radius of convergence from part (a). Do not write beyond this border.