Do not write beyond this border

- 1. On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t) = 90 + 45\cos\left(\frac{t^2}{18}\right)$, where t is measured in hours and $0 \le t \le 8$. At the beginning of the workday (t = 0), the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \le t \le 8$, the plant processes gravel at a constant rate of 100 tons per hour.
 - (a) Find G'(5). Using correct units, interpret your answer in the context of the problem.

1pt - G'(5)

The rate at which improcessed gravel arrives at gravel processing plant @ t=5hr is decreasing @ 24.588 tons/hr2

(b) Find the total amount of unprocessed gravel that arrives at the plant during the hours of operation on this workday.

lpt-answer

Unauthorized copying or reuse of any part of this page is illegal.

Continue problem 1 on page 5.

A(+) = amount unprocessed gravel

(c) Is the amount of unprocessed gravel at the plant increasing or decreasing at time t = 5 hours? Show the work that leads to your answer. A(t) inc? A(t) dec?

A'(+) > 0? A'(+) < 0?

$$A'(t) = G(t) - 100$$

$$V_1(2) = Q(2) - 100$$

= -1.859

Amount of unprocessed gravel is decreasing et=5 b/a A'(5)<0

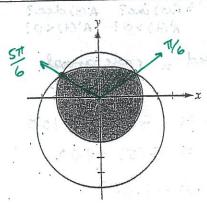
(d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer.

414) = 0

Do not write beyond this border

G(+)-100=0

+= 4.923


$$A(4.923) = 500 + \begin{cases} 4.923 \\ (64) - 100 \end{cases} dt = 635.376$$

lpt-reason

Max arout of uprocessed gravel is 635.376 tons.

Unauthorized copying or reuse of any part of this page is illegal.

GO ON TO THE NEXT PAGE.

- 2. The graphs of the polar curves r=3 and $r=4-2\sin\theta$ are shown in the figure above. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5\pi}{6}$.
 - (a) Let S be the shaded region that is inside the graph of r=3 and also inside the graph of $r=4-2\sin\theta$. Find the area of S.

Area of
$$S = \frac{1}{2} \int_{6}^{50} (4 - 2\sin \theta)^{2} d\theta + \frac{2}{3} \pi(3)^{2}$$

= 24.70°

pt-integrand,

pt-limits of

constant

Do not write beyond this border

Do not write beyond this border

(b) A particle moves along the polar curve $r = 4 - 2\sin\theta$ so that at time t seconds, $\theta = t^2$ Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.

(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5.

position =
$$< x(t), y(t) >$$

2p. velsents

Unauthorized copying or reuse of any part of this page is Illegal.

GO ON TO THE NEXT PAGE.