School Year 2023/2024 Ms. Kane

Calculus BC Schedule--Unit 5 (Chapter 6) The Definite Integral

	Monday	Tuesday	Wednesday	Thursday	Friday
Week 11		31-Oct	1-Nov	2-Nov	3-Nov
Lesson		LATE START 6.1 Area, 6.11 Midpoint Rule	6.1 Area, 6.11 Midpoint Rule	6.2 The Definite Integral	6.2 The Definite Integral
HMWK		HW1p.396 #2,3,(make tables of values) 5ab, p.411 AP Practice #1,10a, p.514 #5, Calculator p.515 #26ab,27	HW2 p.410 #63,66, p.411 #9a, p.461 AP Practice #10, p.514 #6, Calculator p.515 #28	HW3 p.408 #13,14,17,27-30, p.412 AP Practice #10bd	HW4 Definite Integrals HW Handou
Week 12	6-Nov	7-Nov	8-Nov	9-Nov	10-Nov
Lesson	6.4 Properties of the Definite Integral	LATE START 6.5 Indefinite Integral	6.3 Fundamental Theorem of Calculus Quiz 6.1, 6.2 & 6.4	6.5 Method of Substitution Veterans' Day Assembly?	6.5 Method of Substitution
HMWK	HW5p.408 #15,16, p.432 #9, p.437 AP Practice #1,3,11, p.460 AP Practice #14bc	HW6p.449 #9, 10,11,12,13, p.453 AP Practice #1 Study for Quiz 6.1, 6.2 & 6.4	HW7p.420 #19, 22,27,29,35,37 (check all answers with Calculator)	HW8 p.449 #21-27,49	HW9 p.449 #29, 30,31,37,40,53, p.453 AP Practice #6,7,13
Week 13	13-Nov	14-Nov	15-Nov	16-Nov	17-Nov
Lesson	6.5 Method of Substitution	LATE START 6.6 Integration by Parts	6.6 Integration by Parts Quiz 6.3 & 6.5	6.10 Integration Using Partial Fractions	6.4 MVT for Integrals & Average Value
HMWK	HW10p.450 #63b,71,73,79,96, p.453 AP Practice #4,8, p.696 AP Practice #3,4 (check all answers with Calculator)	HW11p.471 #3,5,8,13,31 p.473 AP Practice #5,6 Study for Quiz 6.3 & 6.5 November IML Math Contest after school?	HW12 p.471 #41,46,51,53, p.473 AP Practice #4	HW13 p.502 #3,7,21,33,49, p.504 AP Practice #3	HW14p.434 #71,81b, p.437 AP Practice #2, p.451 #101, p.454 AP Practice #9, Calculator p.434 #98
Week 14	20-Nov	21-Nov	22-Nov	23-Nov	24-Nov
Lesson	6.3 Fundamental Theorem of Calculus	6.3 Fundamental Theorem of Calculus	NO SCHOOL Day Before Turkey Day	NO SCHOOL Turkey Day	NO SCHOOL Day After Turkey Day
HMWK	HW15 p.420 #5,7,11,15,17, p.423 AP Practice #6,7	HW16p.420 #13,18, p.424 AP Practice #9,10,12, Calculator p.421 #63ab, p.424 AP Practice #11	No Additional Homework	No Additional Homework	No Additional Homework

School Year 2023/2024 Ms. Kane

Calculus BC Schedule--Unit 5 (Chapter 6) The Definite Integral

	Monday	Tuesday	Wednesday	Thursday	Friday
Week 14	27-Nov	28-Nov	29-Nov	30-Nov	1-Dec
Lesson	6.11 Trapezoid Sums	LATE START 6.11 Trapezoid Sums	Unit 5 Review (Book Chapter 6)	AP Activity: Unit 5 (Book Chapter 6)	Unit 5 Test (Book Chapter 6)
HMWK	HW17 p.514 #3, Calculator p.515 #9,25c,26c,30a	HW18 p.516 #31,32, AP Practice #1-4	HW19p.458 #9,15,19,23,32,41, 44, AP Practice #8,9,12, p.535 #25,27, p.536 AP Review #3,5,6	AP Activity: Unit 5 due Dec 7	No Additional Homework

School Year 2023/2024 Ms. Kane

Calculus BC Schedule--Unit 5 (Chapter 6) The Definite Integral

Monday Tuesday Wednesday Thursday Friday

UNIT 5: Definite Integrals

CHA-4

Definite integrals allow us to solve problems involving the accumulation of change over an interval.

LEARNING OBJECTIVE

CHA-4.A

Interpret the meaning of areas associated with the graph of a rate of change in context.

ESSENTIAL KNOWLEDGE

CHA-4.A.1

The area of the region between the graph of a rate of change function and the \boldsymbol{x} axis gives the accumulation of change.

CHA-4.A.2

In some cases, accumulation of change can be evaluated by using geometry.

CHA-4.A.3

If a rate of change is positive (negative) over an interval, then the accumulated change is positive (negative).

CHA-4.A.4

The unit for the area of a region defined by rate of change is the unit for the rate of change multiplied by the unit for the independent variable.

LIM-5

Definite integrals can be approximated using geometric and numerical methods.

LEARNING OBJECTIVE

LIM-5.A

Approximate a definite integral using geometric and numerical methods.

ESSENTIAL KNOWLEDGE

LIM-5.A.1

Definite integrals can be approximated for functions that are represented graphically, numerically, analytically, and verbally.

LIM-5.A.2

Definite integrals can be approximated using a left Riemann sum, a right Riemann sum, a midpoint Riemann sum, or a trapezoidal sum; approximations can be computed using either uniform or nonuniform partitions.

LIM-5.A.3

Definite integrals can be approximated using numerical methods, with or without technology.

LIM-5.A.4

Depending on the behavior of a function, it may be possible to determine whether an approximation for a definite integral is an underestimate or overestimate for the value of the definite integral.

LIM-5.B

Interpret the limiting case of the Riemann sum as a definite integral.

LIM-5.B.1

The limit of an approximating Riemann sum can be interpreted as a definite integral.

LIM-5.B.2

A Riemann sum, which requires a partition of an interval I, is the sum of products, each of which is the value of the function at a point in a subinterval multiplied by the length of that subinterval of the partition.

LIM-5.C

Represent the limiting case of the Riemann sum as a definite integral.

LIM-5.C.1

The definite integral of a continuous function f over the interval [a,b], denoted by $\int_a^b f(x)dx$, is the limit of Riemann sums as the widths of the subintervals approach 0. That is,

$$\int_a^b f(x)dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i, \text{ where } n \text{ is}$$

the number of subintervals, Δx_i is the width of the ith subinterval, and x_i^* is a value in the ith subinterval.

LIM-5.C.2

A definite integral can be translated into the limit of a related Riemann sum, and the limit of a Riemann sum can be written as a definite integral.

Calculus BC Schedule--Unit 5 (Chapter 6) The Definite Integral

Monday Tuesday Wednesday Thursday Friday

FUN-6

Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.

LEARNING OBJECTIVE

FUN-6.A

Calculate a definite integral using areas and properties of definite integrals.

Evaluate definite integrals analytically using the Fundamental Theorem of Calculus.

FUN-6.C

Determine antiderivatives of functions and indefinite integrals, using knowledge of derivatives.

FUN-6.D

For integrands requiring substitution or rearrangements into equivalent forms:

- (a) Determine indefinite integrals.
- (b) Evaluate definite integrals.

FUN-6.D

For integrands requiring substitution or rearrangements into equivalent forms:

- (a) Determine indefinite integrals.
- (b) Evaluate definite integrals.

FUN-6.

For integrands requiring integration by parts:

- (a) Determine indefinite integrals. **BC ONLY**
- (b) Evaluate definite integrals. **BC ONLY**

FUN-6.

For integrands requiring integration by linear partial fractions:

- (a) Determine indefinite integrals. **BC ONLY**
- (b) Evaluate definite integrals. **BC ONLY**

ESSENTIAL KNOWLEDGE

FUN-6.A.

In some cases, a definite integral can be evaluated by using geometry and the connection between the definite integral and area.

FUN-6.A.2

Properties of definite integrals include the integral of a constant times a function, the integral of the sum of two functions, reversal of limits of integration, and the integral of a function over adjacent intervals.

FUN-6.A.3

The definition of the definite integral may be extended to functions with removable or jump discontinuities.

FUN-6.B.1

An antiderivative of a function f is a function g whose derivative is f.

FUN-6.B.2

If a function f is continuous on an interval containing a, the function defined by $F(x) = \int_a^x f(t) dt$ is an antiderivative of f for x in the interval.

FUN-6.B.3

If f is continuous on the interval [a, b] and F is an antiderivative of f, then $\int_a^b f(x) dx = F(b) - F(a).$

FUN-6.C.1

 $\int f(x)dx$ is an indefinite integral of the function f and can be expressed as $\int f(x)dx = F(x) + C$, where F'(x) = f(x) and C is any constant.

FUN-6.C.2

Differentiation rules provide the foundation for finding antiderivatives.

FUN-6.C.3

Many functions do not have closed-form antiderivatives.

FUN-6.D.1

Substitution of variables is a technique for finding antiderivatives.

FIIN CD3

For a definite integral, substitution of variables requires corresponding changes to the limits of integration.

FUN-6.D.3

Techniques for finding antiderivatives include rearrangements into equivalent forms, such as long division and completing the square.

FUN-6.E.1

Integration by parts is a technique for finding antiderivatives. **BC ONLY**

FUN-6.F.1

Some rational functions can be decomposed into sums of ratios of linear, nonrepeating factors to which basic integration techniques can be applied. **BC ONLY**