School Year 2023/2024 Ms. Kane # Calculus BC Schedule--Unit 5 (Chapter 6) The Definite Integral | | Monday | Tuesday | Wednesday | Thursday | Friday | |---------|--|---|--|--|---| | Week 11 | | 31-Oct | 1-Nov | 2-Nov | 3-Nov | | Lesson | | LATE START
6.1 Area, 6.11
Midpoint Rule | 6.1 Area, 6.11
Midpoint Rule | 6.2 The Definite
Integral | 6.2 The Definite
Integral | | HMWK | | HW1p.396
#2,3,(make tables
of values) 5ab,
p.411 AP Practice
#1,10a, p.514 #5,
Calculator p.515
#26ab,27 | HW2 p.410
#63,66, p.411 #9a,
p.461 AP Practice
#10, p.514 #6,
Calculator p.515
#28 | HW3 p.408
#13,14,17,27-30,
p.412 AP Practice
#10bd | HW4 Definite
Integrals HW
Handou | | Week 12 | 6-Nov | 7-Nov | 8-Nov | 9-Nov | 10-Nov | | Lesson | 6.4 Properties of the Definite Integral | LATE START 6.5 Indefinite Integral | 6.3 Fundamental
Theorem of
Calculus
Quiz 6.1, 6.2 & 6.4 | 6.5 Method of
Substitution
Veterans' Day
Assembly? | 6.5 Method of
Substitution | | HMWK | HW5p.408
#15,16, p.432 #9,
p.437 AP Practice
#1,3,11, p.460 AP
Practice #14bc | HW6p.449 #9,
10,11,12,13, p.453
AP Practice #1
Study for Quiz
6.1, 6.2 & 6.4 | HW7p.420 #19,
22,27,29,35,37
(check all answers
with Calculator) | HW8 p.449
#21-27,49 | HW9 p.449 #29, 30,31,37,40,53, p.453 AP Practice #6,7,13 | | Week 13 | 13-Nov | 14-Nov | 15-Nov | 16-Nov | 17-Nov | | Lesson | 6.5 Method of
Substitution | LATE START
6.6 Integration by
Parts | 6.6 Integration by
Parts
Quiz 6.3 & 6.5 | 6.10 Integration
Using Partial
Fractions | 6.4 MVT for
Integrals &
Average Value | | HMWK | HW10p.450
#63b,71,73,79,96,
p.453 AP Practice
#4,8, p.696 AP
Practice #3,4
(check all answers
with Calculator) | HW11p.471
#3,5,8,13,31 p.473
AP Practice #5,6
Study for Quiz 6.3
& 6.5
November IML
Math Contest after
school? | HW12 p.471
#41,46,51,53,
p.473 AP Practice
#4 | HW13 p.502
#3,7,21,33,49,
p.504 AP Practice
#3 | HW14p.434
#71,81b, p.437 AP
Practice #2, p.451
#101, p.454 AP
Practice #9,
Calculator p.434
#98 | | Week 14 | 20-Nov | 21-Nov | 22-Nov | 23-Nov | 24-Nov | | Lesson | 6.3 Fundamental
Theorem of
Calculus | 6.3 Fundamental
Theorem of
Calculus | NO SCHOOL
Day Before Turkey
Day | NO SCHOOL
Turkey Day | NO SCHOOL
Day After Turkey
Day | | HMWK | HW15 p.420
#5,7,11,15,17,
p.423 AP Practice
#6,7 | HW16p.420
#13,18, p.424 AP
Practice #9,10,12,
Calculator p.421
#63ab, p.424 AP
Practice #11 | No Additional
Homework | No Additional
Homework | No Additional
Homework | School Year 2023/2024 Ms. Kane # Calculus BC Schedule--Unit 5 (Chapter 6) The Definite Integral | | Monday | Tuesday | Wednesday | Thursday | Friday | |---------|---|--|---|---|---------------------------------| | Week 14 | 27-Nov | 28-Nov | 29-Nov | 30-Nov | 1-Dec | | Lesson | 6.11 Trapezoid
Sums | LATE START
6.11 Trapezoid
Sums | Unit 5 Review
(Book Chapter 6) | AP Activity: Unit 5
(Book Chapter 6) | Unit 5 Test (Book
Chapter 6) | | HMWK | HW17 p.514 #3,
Calculator p.515
#9,25c,26c,30a | HW18 p.516
#31,32, AP
Practice #1-4 | HW19p.458
#9,15,19,23,32,41,
44, AP Practice
#8,9,12, p.535
#25,27, p.536 AP
Review #3,5,6 | AP Activity: Unit 5
due Dec 7 | No Additional
Homework | School Year 2023/2024 Ms. Kane # Calculus BC Schedule--Unit 5 (Chapter 6) The Definite Integral Monday Tuesday Wednesday Thursday Friday # **UNIT 5: Definite Integrals** #### CHA-4 Definite integrals allow us to solve problems involving the accumulation of change over an interval. ### **LEARNING OBJECTIVE** #### CHA-4.A Interpret the meaning of areas associated with the graph of a rate of change in context. # **ESSENTIAL KNOWLEDGE** #### CHA-4.A.1 The area of the region between the graph of a rate of change function and the \boldsymbol{x} axis gives the accumulation of change. #### CHA-4.A.2 In some cases, accumulation of change can be evaluated by using geometry. #### CHA-4.A.3 If a rate of change is positive (negative) over an interval, then the accumulated change is positive (negative). #### CHA-4.A.4 The unit for the area of a region defined by rate of change is the unit for the rate of change multiplied by the unit for the independent variable. ### LIM-5 Definite integrals can be approximated using geometric and numerical methods. ### **LEARNING OBJECTIVE** #### LIM-5.A Approximate a definite integral using geometric and numerical methods. # **ESSENTIAL KNOWLEDGE** #### LIM-5.A.1 Definite integrals can be approximated for functions that are represented graphically, numerically, analytically, and verbally. #### LIM-5.A.2 Definite integrals can be approximated using a left Riemann sum, a right Riemann sum, a midpoint Riemann sum, or a trapezoidal sum; approximations can be computed using either uniform or nonuniform partitions. ### LIM-5.A.3 Definite integrals can be approximated using numerical methods, with or without technology. #### LIM-5.A.4 Depending on the behavior of a function, it may be possible to determine whether an approximation for a definite integral is an underestimate or overestimate for the value of the definite integral. #### LIM-5.B Interpret the limiting case of the Riemann sum as a definite integral. #### LIM-5.B.1 The limit of an approximating Riemann sum can be interpreted as a definite integral. #### LIM-5.B.2 A Riemann sum, which requires a partition of an interval I, is the sum of products, each of which is the value of the function at a point in a subinterval multiplied by the length of that subinterval of the partition. # LIM-5.C Represent the limiting case of the Riemann sum as a definite integral. # LIM-5.C.1 The definite integral of a continuous function f over the interval [a,b], denoted by $\int_a^b f(x)dx$, is the limit of Riemann sums as the widths of the subintervals approach 0. That is, $$\int_a^b f(x)dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i, \text{ where } n \text{ is}$$ the number of subintervals, Δx_i is the width of the ith subinterval, and x_i^* is a value in the ith subinterval. # LIM-5.C.2 A definite integral can be translated into the limit of a related Riemann sum, and the limit of a Riemann sum can be written as a definite integral. # Calculus BC Schedule--Unit 5 (Chapter 6) The Definite Integral Monday Tuesday Wednesday Thursday Friday ### FUN-6 Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. # LEARNING OBJECTIVE #### FUN-6.A Calculate a definite integral using areas and properties of definite integrals. Evaluate definite integrals analytically using the Fundamental Theorem of Calculus. #### FUN-6.C Determine antiderivatives of functions and indefinite integrals, using knowledge of derivatives. # FUN-6.D For integrands requiring substitution or rearrangements into equivalent forms: - (a) Determine indefinite integrals. - (b) Evaluate definite integrals. # FUN-6.D For integrands requiring substitution or rearrangements into equivalent forms: - (a) Determine indefinite integrals. - (b) Evaluate definite integrals. # FUN-6. For integrands requiring integration by parts: - (a) Determine indefinite integrals. **BC ONLY** - (b) Evaluate definite integrals. **BC ONLY** # FUN-6. For integrands requiring integration by linear partial fractions: - (a) Determine indefinite integrals. **BC ONLY** - (b) Evaluate definite integrals. **BC ONLY** #### **ESSENTIAL KNOWLEDGE** #### FUN-6.A. In some cases, a definite integral can be evaluated by using geometry and the connection between the definite integral and area. #### FUN-6.A.2 Properties of definite integrals include the integral of a constant times a function, the integral of the sum of two functions, reversal of limits of integration, and the integral of a function over adjacent intervals. #### FUN-6.A.3 The definition of the definite integral may be extended to functions with removable or jump discontinuities. #### FUN-6.B.1 An antiderivative of a function f is a function g whose derivative is f. #### FUN-6.B.2 If a function f is continuous on an interval containing a, the function defined by $F(x) = \int_a^x f(t) dt$ is an antiderivative of f for x in the interval. ### FUN-6.B.3 If f is continuous on the interval [a, b] and F is an antiderivative of f, then $\int_a^b f(x) dx = F(b) - F(a).$ #### FUN-6.C.1 $\int f(x)dx$ is an indefinite integral of the function f and can be expressed as $\int f(x)dx = F(x) + C$, where F'(x) = f(x) and C is any constant. # FUN-6.C.2 Differentiation rules provide the foundation for finding antiderivatives. # FUN-6.C.3 Many functions do not have closed-form antiderivatives. # FUN-6.D.1 Substitution of variables is a technique for finding antiderivatives. # FIIN CD3 For a definite integral, substitution of variables requires corresponding changes to the limits of integration. # FUN-6.D.3 Techniques for finding antiderivatives include rearrangements into equivalent forms, such as long division and completing the square. # FUN-6.E.1 Integration by parts is a technique for finding antiderivatives. **BC ONLY** # FUN-6.F.1 Some rational functions can be decomposed into sums of ratios of linear, nonrepeating factors to which basic integration techniques can be applied. **BC ONLY**