Calculus BC Schedule -- Unit 6 Differential Equations and Mathematical Modeling

	Monday	Tuesday	Wednesday	Thursday	Friday
Week 15	4-Dec	5-Dec	6-Dec	7-Dec	8-Dec
Lesson	7.1 Ordinary Differential Equations	LATE START 7.2 Separable Differential Equations	7.2 Separable Differential Equations	7.3 Slope Fields/7.4 Euler's Method	7.3 Slope Fields
нмwк	HW1 p.543 #31,35,38,39, AP Practice #4, p.542 #21	HW2 p.551 #15,18,19,21, AP Practice #1,2,3	HW3p.551 #22,23, AP Practice #5,9, p.569 #16b	HW4p.559 #AP Practice #1,2, Calculator p.557 Graph slope field in calculator & sketch the particular solution on paper, #11,12,13,15	HW5Sketch slope fields for p.557 #3a, #5a, #9a on [-1,1] by [- 1,1] with table of values, AP Practice #2a, p.559 #7,9
Week 16	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec
Lesson	7.3 Slope Fields	LATE START 7.5 Logistical Model	Unit 6 TEST (Book Chapter 7)	Practice for AP Practice Exam	Practice for AP Practice Exam / Calculus Holiday Songs
нмwк	HW6p.557 #17,18, AP Practice #1,3, p.570 AP Practice #5	HW7p.566 AP Practice #1,2,4,5,6 December IML Math Contest after school?	STUDY for Final (Practice AP Exam)	STUDY!!!!	STUDY!!!!
Week 17	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec
WCCR 1/		19-Dec			
Lesson	FINAL EXAMS (1st @ 8:45am, 3rd @10:25am, Zero @ 12pm)	FINAL EXAMS (2nd @ 8:45am, 4th @ 10:25am)	FINAL EXAMS (6th @ 8:45am, 5th @ 10:25am)	NO SCHOOL Teacher Institute Day	WINTER BREAK
HMWK	STUDY!!!!	STUDY!!!!	No Additional Homework	No Additional Homework	No Additional Homework

Calculus BC Schedule -- Unit 6 Differential Equations and Mathematical Modeling

Unit 6: Differential Equations & Mathematical Modeling

FUN-7

Solving differential equations allows us to determine functions and develop models.

LEARNING OBJECTIVE

Interpret verbal statements of problems as differential equations involving a derivative expression.

FUN-7.B Verify solutions to differential equations.

FUN-7.C Estimate solutions to differential equations.

FUN-7.C Estimate solutions to differential equations.

FUN-7.C Estimate solutions to differential equations.

FUN-7.D Determine general solutions to differential equations.

FUN-7.E Determine particular solutions to differential equations.

ESSENTIAL KNOWLEDGE

FUN-7.A.1

Differential equations relate a function of an independent variable and the function's derivatives.

FUN-7.B.1

Derivatives can be used to verify that a function is a solution to a given differential equation.

FUN-7.B.2 There may be infinitely many general solutions to a differential equation.

FUN-7.C.1 A slope field is a graphical representation of a differential equation on a finite set of points in the plane.

FUN-7.C.2 Slope fields provide information about the behavior of solutions to first-order differential equations.

FUN-7.C.3 Solutions to differential equations are functions

FUN-7.C.4 Euler's method provides a procedure for approximating a solution to a differential eq

or families of functions.

approximating a solution to a differential equation or a point on a solution curve. **BC ONLY**

FUN-7.D.1

Some differential equations can be solved by separation of variables.

FUN-7.D.2 Antidifferentiation can be used to find general solutions to differential equations.

FUN-7.E.1 A general solution may describe infinitely many solutions to a differential equation. There is only one particular solution passing through a given point.

FUN-7.E.2

The function F defined by $F(x) = y_0 + \int_a^x f(t) dt$

is a particular solution to the differential equation $\frac{dy}{dx} = f(x)$, satisfying $F(a) = y_0$.

 $dx = \int (x, y) dx = \int (x, y) dx$

FUN-7.E.3

Solutions to differential equations may be subject to domain restrictions.

FUN-7.F

FUN-7.G

in context.

context. BC ONLY

FUN-7.H

Interpret the meaning of a differential equation and its variables in context.

Determine general and

for problems involving

differential equations

Interpret the meaning of

the logistic growth model in

particular solutions

FUN-7.F.1

Specific applications of finding general and particular solutions to differential equations include motion along a line and exponential growth and decay.

FUN-7.F.2

The model for exponential growth and decay that arises from the statement "The rate of change of a quantity is proportional to the size dv

of the quantity" is $\frac{dy}{dt} = ky$.

FUN-7.G.1

The exponential growth and decay model,

 $\frac{dy}{dt} = ky$, with initial condition $y = y_0$ when t = 0,

has solutions of the form $y = y_0 e^{kt}$.

FUN-7.H.1

The model for logistic growth that arises from the statement "The rate of change of a quantity is jointly proportional to the size of the quantity and the difference between the quantity and the

carrying capacity" is $\frac{dy}{dt} = ky(a - y)$. BC ONLY

FUN-7.H.2

The logistic differential equation and initial conditions can be interpreted without solving the differential equation. **BC ONLY**

FUN-7.H.3

The limiting value (carrying capacity) of a logistic differential equation as the independent variable approaches infinity can be determined using the logistic growth model and initial conditions. **BC ONLY**

FUN-7.H.4

The value of the dependent variable in a logistic differential equation at the point when it is changing fastest can be determined using the logistic growth model and initial conditions. BE CONLY