Calculus BC Schedule-- Unit 9 (Chapter 10) Infinite Series

	Monday	Tuesday	Wednesday	Thursday	Friday	
Week 22	12-Feb	13-Feb	14-Feb	15-Feb	16-Feb	
Lesson	10.2 Infinite Series	10.8 Power Series	10.8 Power Series	10.6 Ratio Test, 10.4 Direct Comparison Test	10.6 Ratio Test, 10.4 Direct Comparison Test Quiz 10.2 & 10.8	
нмwк	HW1p.731 #19, 25,29,37,39,45,49, 51,53,55, AP Practice #4	HW2 p.787 #45, 46,53a,54a,55a, 56a	HW3p.787 #57a, 58a,59,79a,80a, AP Practice #6,7b	HW4p.770 #5,7,9,23, p.752 #5,7,9 Study for Quiz 10.2 & 10.8	HW5p.770 #17,25,49, AP Practice #2, p.752 #1,57ab, AP Practice #3	
Week 23	19-Feb	20-Feb	21-Feb	22-Feb	23-Feb	
Lesson	NO SCHOOL President's Day	LATE START 10.3 Properties of Series, nth term Test, Integral Test, p-series Test, 10.4 Limit Comparison Test	10.3 Properties of Series, nth term Test, Integral Test, p-series Test, 10.4 Limit Comparison Test	10.5 Alternating Series, Absolute Convergence	10.5 Alternating Series, Absolute Convergence Black History Month Assembly?	
нмwк	No Additional Homework	HW6p.743 #2,9, 10,11,15,17,21,23, 33, p.752 #15,17,23	HW7p.743 #39,41, AP Practice #1,2,3, p.752 #37,39, AP Practice #1	HW8 p.762 #1,2, 7,9,19,41,43,49	HW9 p.762 #45, AP Practice #4, p.775 #8,28,35	
Week 24	26-Feb	27-Feb	28-Feb	1-Feb	1-Mar	
Lesson	10.9 Taylor Series; Maclaurin Series	<i>LATE START</i> 10.9 Taylor Series; Maclaurin Series Quiz 10.3,10.4, 10.5, & 10.6	10.9 Taylor Series; Maclaurin Series	10.10 Taylor Polynomial Approximation & LaGrange Error Bound	10.10 Taylor Polynomial Approximation & LaGrange Error Bound	
нмwк	HW10p.797 #7,9,29,30,31,34 Study for Quiz 10.3,10.4, 10.5, & 10.6	HW11 p.797 #10, 11,13,15,17,19, p.787 #67	HW12 p.797 #21,23,25,27,39, AP Practice #1,2,3	HW13 p.805 #1,5,9,20,21, AP Practice #2,3,4	HW14Calculator p.805 #13ad, 14ad,15ad,16ad, AP Practice #5	
Week 25	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar	
Lesson	NO SCHOOL Casimir Pulaski Day	10.10 Taylor Polynomial Approximation & LaGrange Error Bound		10.2 - 10.10 Series	Unit 9 Review (Book Chapter 10)	
нмwк	No Additional Homework	HW15AP Practice Problems	HW16AP Series Problems	HW17AP Series Problems	HW18p.811 #16, 17,22,35,42,52, AP Review #1,5,7,11,12	

Calculus BC Schedule-- Unit 9 (Chapter 10) Infinite Series

	Monday	Tuesday	Wednesday	Thursday	Fric
Week 26	11-Mar	12-Mar	13-Mar		
Lesson	Unit 9 Review (Book Chapter 10)	NO SCHOOL Teacher Institute Day	Unit 9 TEST		
HMWK	STUDY for TEST!!!	No Additional Homework	No Additional Homework		

Calculus PC Schedule -- Unit Q (Chapter 10) Infinite Series

Monday		Tuesday	W	ednesday	Tł	nursday	Friday	
Unit 9: Infinite Serie	es	·	-			-	÷	
LIM-7 Applying limits may allow us to o		finite sum of infinitely many term	ns.	LIM-8 Power series allow us t	to represen	t associated function	ns on an appropriate interval.	
LEARNING OBJECTIVE LIM-7.A Determine whether a series converges or diverges. BC ONLY	ESSENTIAL KNOWLEDGE LIM-7.A.1 The <i>n</i> th partial sum is defined as the sum of the first <i>n</i> terms of a series. BC ONLY LIM-7.A.2 An infinite series of numbers converges to a real number <i>S</i> (or has sum <i>S</i>), if and only if the limit of its sequence of partial sums exists and equals <i>S</i> . BC ONLY LIM-7.A.3 A geometric series is a series with a constant ratio between successive terms. BC ONLY LIM-7.A.4 If <i>a</i> is a real number and <i>r</i> is a real number such that $ r < 1$, then the geometric series $\sum_{r=0}^{\infty} ar^n = \frac{a}{1-r}$. BC ONLY LIM-7.A.5 The <i>n</i> th term test is a test for divergence of a series. BC ONLY			LEARNING OBJECTIVE LIM-B.A Represent a function at a point as a Taylor polynomial. BC ONLY LIM-B.B Approximate function values using a Taylor polynomial. BC ONLY LIM-B.C Determine the error bound associated with a Taylor polynomial approximation. BC ONLY		ESSENTIAL KNOWLEDGE LIM-B.A.1 The coefficient of the <i>n</i> th degree term in a Taylor polynomial for a function <i>f</i> centered at $x = a$ is $\frac{f^{(n)}(a)}{n!}$. BC ONLY LIM-B.A.2 In many cases, as the degree of a Taylor polynomial increases, the <i>n</i> th degree polynomial will approach the original function over some interval. BC ONLY		
LIM-7.A Determine whether a series converges or diverges. BC ONLY						LIM-8.B.1 Taylor polynomials for a function <i>f</i> centered at <i>x</i> = <i>a</i> can be used to approximate function values of <i>f</i> near <i>x</i> = <i>a</i> . BC ONLY LIM-8.C.1 The Lagrange error bound can be used to determine a maximum interval for the error of a Taylor polynomial approximation to a function. BC ONLY		
LIM-7.A Determine whether a series converges or diverges. BC ONLY LIM-7.A Determine whether a series converges or diverges. BC ONLY LIM-7.A Determine whether a series converges or diverges. BC ONLY	whether BC ONLY LIM-7.A.2 In addition of numb- alternatin BC ONLY LIM-7.A.9 The com whether BC ONLY LIM-7.A.9 The limit determin diverges LIM-7.A.1	gral test is a method to determin a series converges or diverges. on to geometric series, common ers include the harmonic series, ng harmonic series, and <i>p</i> -series a parison test is a method to dete a series converges or diverges. to comparison test is a method to ne whether a series converges of s. BC ONLY	n series , the s. ermine	LIM-8.D Determine the radius of convergence and inter of convergence for a p series. BC ONLY	rval	LIM-8.C.2 In some situation bound can be us Taylor polynomia a function. Bc own LIM-8.D.1 A power series is where <i>n</i> is a non- sequence of rea number. Bc onLy LIM-8.D.2 If a power series at a single point c Bc onLy LIM-8.D.3 The ratio test ca	hs, the alternating series error ted to bound the error of a al approximation to the value of a series of the form $\sum_{n=0}^{\infty} a_n(x-r)$, negative integer, $\{a_n\}$ is a l numbers, and r is a real converges, it either converges or has an interval of convergence.	
LIM-7.A Determine whether a series converges or diverges. BC ONLY	determin converge LIM-7.A.1 The ratio whether diverges ExcL The nth the inte compar ratio tes AP Cala assessed	ne whether an alternating series es. BC ONLY 1 test is a method to determine a series of numbers converges	or and a the re not s may			be used to identi the series conve both endpoints of interval of conver LIM-8.D.5 If a power series convergence, th Taylor series of t converges over LIM-8.D.6 The radius of cor obtained by term by-term integrati	Nergence of a power series can fy an open interval on which rges, but it is necessary to test of the interval to determine the rgence. BC ONLY has a positive radius of en the power series is the he function to which it the open interval. BC ONLY neergence of a power series hoy-term differentiation or term- on is the same as the radius of the original power series. BC ONLY	
LIM-7.A Determine whether a series converges or diverges. BC ONLY	LIM-7.A.1 A series condition BC ONLY LIM-7.A.1 If a series converge LIM-7.A.1 If a series series ob	 mits. may be absolutely convergent, nally convergent, or divergent. s converges absolutely, then it es. BC ONLY 	у	LIM-8.E Represent a function a Taylor series or a Macl series. BC ONLY LIM-8.F Interpret Taylor series Maclaurin series. BC ON LIM-8.C Represent a given func	and III	LIM-8.F.1 The Maclaurin se series. BC ONLY LIM-8.F.2 The Maclaurin se provides the fou Maclaurin series LIM-8.G.1	hial for $f(x)$ is a partial sum of for $f(x)$. BC ONLY eries for $\frac{1}{1-x}$ is a geometric eries for sin x , cos x , and e^x indation for constructing the for other functions. BC ONLY eries, a power series for a given	

a power series. BC ONLY

function can be derived using operations such

as term-by-term differentiation or term-by-term integration, and by various methods (e.g., algebraic processes, substitutions, or using properties of geometric series). **BC ONLY**

LIM-7.B.1

LIM-7.B

series. BC ONLY

Approximate the sum of a

If an alternating series converges by the alternating series test, then the alternating series error bound can be used to bound how far a partial sum is from the value of the infinite series. BC ONLY