Calculus AB Schedule--Unit 4/Chapter 4 and 5: Applications of Derivatives

	Monday	Tuesday	Wednesday	Thursday	Friday
Week 11				2-Nov	3-Nov
Lesson				5.1 Maximum and Minimum Values; Critical Numbers	5.1 Maximum and Minimum Values; Critical Numbers
HMWK				HW1--p. 316 \#7, 13,17,23,25,27,35, p. 319 AP Practice \#1, Calculator p. 317 \#66ab	$\begin{gathered} \text { HW2--p.317 \#39, } \\ \text { 42,51,61, p.319 } \\ \text { AP Practice \#3,6 } \end{gathered}$

Week 12	6-Nov	7-Nov	8-Nov	9-Nov	10-Nov
Lesson	5.1 Maximum and Minimum Values; Critical Numbers	LATE START 5.2 Mean Value Theorem	5.2 Mean Value Theorem	5.2 Mean Value Theorem Veterans' Day Assembly?	5.3 Local Extrema and Concavity
HMWK	$\begin{gathered} \text { HW3--p. } 317 \text { \#59, } \\ 63 \text { p. } 319 \mathrm{AP} \\ \text { Practice \#2,5, } \\ \text { Calculator p. } 317 \\ \# 66,70 \mathrm{ab} \end{gathered}$	HW4--p. 328 \#21ab, 27ab,58, p. 330 AP Practice \#3, Calculator \#24,29	$\begin{gathered} \text { HW5--p. } 328 \text { \#23, } \\ \text { 22,68, p. } 330 \text { AP } \\ \text { Practice \#9, } \\ \text { Calculator \#28 } \end{gathered}$	$\begin{gathered} \text { HW6--p. } 328 \# 31, \\ 37,41, \text { p. } 344 \\ \# 13,17,35,37, \\ \text { p. } 347 \text { AP Practice } \\ \# 4 \end{gathered}$	$\begin{gathered} \text { HW7--p. } 345 \\ \# 39 \mathrm{bc}, 41 \mathrm{bc}, 49 \mathrm{bc}, \\ 77,79 \end{gathered}$

Week 13	13-Nov	14-Nov	15-Nov	16-Nov	17-Nov
Lesson	5.3 Local Extrema and Concavity	LATE START 5.3 Local Extrema and Concavity	5.3 Local Extrema and Concavity	5.3 Local Extrema and Concavity	4.2 Linearization Quiz 5.1, 5.2 \& 5.3
HMWK	$\begin{gathered} \text { HW8--p. } 345 \text { \#63, } \\ 64, \text { p. } 347 \text { AP } \\ \text { Practice \#2,5,6 } \end{gathered}$	HW9--p. 348 AP Practice \#9,10,12, 14, Video on 2nd Derivative Test November IML Math Contest after school?	HW10--p. 345 \#67b, 69b,91, p. 347 AP Practice \#1,7,8	HW11--p. 345 \#66, 81,85, p. 347 AP Practice \#3,4,11, 13 Study for Quiz 5.1, 5.2 \& 5.3	HW12--p. 278 \#25, 27, Calculator p. 278 \#35,37, p. 281 AP Practice \#5,8

Week 14	$20-\mathrm{Nov}$	21-Nov	22-Nov	23-Nov	24-Nov
Lesson	4.2 Linearization	4.3 Related Rates	NO SCHOOL -- Day Before Turkey Day	NO SCHOOL -Turkey Day	NO SCHOOL -Day After Turkey Day
HMWK	$\begin{gathered} \text { HW13--p. } 278 \text { \#7, } \\ 33,53, \text { p. } 281 \text { AP } \\ \text { Practice \#7, p.304 } \\ \text { AP Review \#2,6 } \end{gathered}$	$\begin{gathered} \text { HW14--p. } 286 \text { \#7, } \\ 9,10,11,13 \end{gathered}$	No Additional Homework	No Additional Homework	No Additional Homework

Calculus AB Schedule--Unit 4/Chapter 4 and 5: Applications of Derivatives

	Monday	Tuesday	Wednesday	Thursday	Friday
Week 14	27-Nov	28-Nov	29-Nov	30-Nov	1-Dec
Lesson	4.3 Related Rates	LATE START 4.3 Related Rates	4.3 Related Rates	Unit 4 REVIEW (Book Chapters 4 \& 5)	AP Activity: Unit 4 (Book Chapters 4 \& 5)
HMWK	HW15--p. 286 \#32, 33,34, p. 291 AP Practice \#9	$\begin{gathered} \text { HW16--p. } 286 \text { \#19, } \\ 22,35,39 \end{gathered}$	HW17--p. 288 \#52, p. 290 AP Practice \#2,3,4,5	- $\bar{H} \overline{1} \overline{1} \overline{8}-\overline{-p} \overline{3} \overline{03} \# \overline{\#}$, 13, AP Review \#4,7a, p. 384 \#7,9b,21, AP Review \#2,4,5,8, 11 Calculator \#19	AP Activity: Unit 4 due Dec 8

Week 15	4-Dec	5-Dec
Lesson	Unit 4 REVIEW (Book Chapters 4 \& 5)	LATE START Unit 4 TEST
HMWK	STUDY for TEST!!!	No Additional Homework

Calculus AB Schedule--Unit 4/Chapter 4 and 5: Applications of Derivatives

	Monday	Tuesday	Wednesday	Thursday	Friday

UNIT 4: Applications of Derivatives

FUN-4 A function's derivative can be	d to understand some behaviors of the function.
LEARNING OBJECTIVE	ESSENTIAL KNOWLEDGE
FUN-4.A	FUN-4.A. 1
Justify conclusions about the behavior of a function based on the behavior of its derivatives.	The first derivative of a function can provide information about the function and its graph. including intervals where the function is increasina or decreasina.
LEARNING OBJECTIVE	ESSENTIAL KNOWLEDGE
FUN-4.A	FUN-4.A. 2
Justify conclusions about the behavior of a function based on the behavior of its derivatives.	The first derivative of a function can determine the location of relative (local) extrema of the function.
LEARNING OBJECTIVE	ESSENTIAL KNOWLEDGE
FUN-4.A	FUN-4.A.3
Justify conclusions about the behavior of a function based on the behavior of its derivatives.	Absolute (global) extrema of a function on a closed interval can only occur at critical points or at endpoints.
LEARNING OBJECTIVE	ESSENTIAL KNOWLEDGE
Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.4
	The graph of a function is concave up (down) on an open interval if the function's derivative is increasing (decreasing) on that interval. \square The second derivative of a function provides information about the function and its graph. including intervals of upward or downward concavity. \square The second derivative of a function may be used to locate points of inflection for the graph of the original function.
LEARNING OBJECTIVE	ESSENTIAL KNOWLEDGE
Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A. 7
	The second derivative of a function may determine whether a critical point is the location of a relative (local) maximum or minimum. FUN-4.A.8 When a continuous function has only one critical point on an interval on its domain and the critical point corresponds to a relative (local) extremum of the function on the interval, then that critical point also corresponds to the absolute (global) extremum of the function on the interval.
LEARNING OBJECTIVE	ESSENTIAL KNOWLEDGE
FUN-4.A	FUN-4.4.9
Justify conclusions about the behavior of a function based on the behavior of its derivatives.	Key features of functions and their derivatives can be identified and related to their graphical, numerical, and analytical representations. FUN-4.A. 10 Graphical, numerical, and analytical information from f^{\prime} and $f^{\prime \prime}$ can be used to predict and explain the behavior of f.
LEARNING OBJECTIVE	ESSENTIAL KNOWLEDGE
FUN-4.A	FUN-4.A.11
Justify conclusions about the behavior of a function based on the behavior of its derivatives.	Key features of the graphs of $f . f^{\prime}$, and $f^{\prime \prime}$ are related to one another.
LEARNING OBJECTIVE	ESSENTIAL KNOWLEDGE
FUN-4.0	FUN-4.D. 1
Determine critical points of implicit relations.	A point on an implicit relation where the first derivative equals zero or does not exist is a critical point of the function.
FUN-4.E	FUN-4.E. 1
Justify conclusions about the behavior of an implicitly defined function based on evidence from its derivatives.	Applications of derivatives can be extended to implicitly defined functions.
	FUN-4.E.2
	Second derivatives involving implicit differentiation may be relations of x, y, and $\frac{d y}{d x}$.

FUN-1
 Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior.
 LEARNING OBJECTIVE
 FUN-1.8
 Justify conclusions about functions by applying the Mean Value Theorem over an interval.
 LEARNING OBJECTIVE
 FUN-1.c
 Justify conclusions about
 functions by applying the Extreme Value Theorem.
 ESSENTIAL KNOWLEDGE
 FUN-1.B. 1
 If a function f is continuous over the interval $[a, b]$ and differentiable over the interval (a, b), then the Mean Value Theorem guarantees a point within that open interval where the instantaneous rate of change equals the average rate of change over the interval.
 ESSENTIAL KNOWLEDGE
 FUN-1.c. 1
 If a function f is continuous over the interval [$a, b]$, then the Extreme Value Theorem guarantees that f has at least one minimum value and at least one maximum value on $[a, b]$.
 FUN-1.c. 2
 A point on a function where the first derivative equals zero or fails to exist is a critical point of the function.
 FUN-1.c. 3
 All local (relative) extrema occur at critical points of a function, though not all critical points are local extrema.

CHA-3
Derivatives allow us to solve real-world problems involving rates of change.

EARNING OBJECTIVE

CHA-3.A
interpret the meaning of a derivative in context

CHA-3.D

Calculate related rates in applied contexts.

LEARNING OBJECTIVE

CHA-3.E
Interpret related rates in applied contexts.

LEARNING OBJECTIVE

CHA-3.F

Approximate a value on a curve using the equation of a tangent line.

ESSENTIAL KNOWLEDGE

CHA-3.A. 1
The derivative of a function can be interpreted as the instantaneous rate of change with respect to its independent variable.

CHA-3.A. 2

The derivative can be used to express information about rates of change in applied contexts.

CHA-3.A. 3

The unit for $f^{\prime}(x)$ is the unit for f divided by the unit for x.

ESSENTIAL KNOWLEDGE

CHA-3.D. 1

The chain rule is the basis for differentiating variables in a related rates problem with respect to the same independent variable.

CHA-3.D. 2

Other differentiation rules, such as the product rule and the quotient rule, may also be necessary to differentiate all variables with respect to the same independent variable.

ESSENTIAL KNOWLEDGE

CHA-3.E. 1

The derivative can be used to solve related rates problems; that is, finding a rate at which one quantity is changing by relating it to other quantities whose rates of change are known.

ESSENTIAL KNOWLEDGE

CHA-3.E. 1

The tangent line is the graph of a locally linear approximation of the function near the point of tangency.

CHA-3.F. 2

For a tangent line approximation, the function's behavior near the point of tangency may determine whether a tangent line value is an underestimate or an overestimate of the corresponding function value.

