Calculus AB Schedule--Unit 5 (Chapter 6) The Definite Integral

	Monday	Tuesday	Wednesday	Thursday	Friday
Week 15			6-Dec	7-Dec	8-Dec
Lesson			6.1 Area, 6.11 Midpoint Rule	6.1 Area, 6.11 Midpoint Rule	6.1 Area, 6.11 Midpoint Rule
HMWK			HW1--p. 396 \#2,3, (make tables of values) 5ab, p. 411 AP Practice \#1, 10a, p. 514 \#5, Calculator p. 515 \#26ab,27	$\begin{gathered} \text { HW2--p. } 410 \text { \#63, } \\ 66, \text { p. } 411 \text { \#9a, } \\ \text { p. } 461 \text { AP Practice } \\ \text { \#10, p. } 514 \text { \#6, } \\ \text { Calculator p. } 515 \\ \# 28 \end{gathered}$	HW3--p. 410 \#64, AP Practice \#5, p. 516 AP Practice \#5, Calculator p. 516 \#35c

Week 16	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec
Lesson	6.2 The Definite Integral	LATE START 6.2 The Definite Integral	6.4 Properties of the Definite Integral	Practice for AP Practice Exam	Practice for AP Practice Exam / Calculus Holiday Songs
HMWK	$\begin{array}{\|c\|} \text { HW4--p. } 408 \text { \#13, } \\ \text { 14,17,27-30, p.412 } \\ \text { AP Practice \#10bd } \end{array}$	HW5--Definite Integrals HW Handout December IML Math Contest after school?	$\begin{gathered} \text { HW6--p. } 408 \text { \#15, } \\ \text { 16, p. } 432 \text { \#9, } \\ \text { p. } 437 \text { AP Practice } \\ \# 1,3,11, \text { p. } 460 \text { AP } \\ \text { Practice \#14bc } \end{gathered}$	STUDY!!!!	STUDY!!!!

Week 17	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec
Lesson	FINAL EXAMS (1st @ 8:45am, 3rd @10:25am, Zero @ 12pm)	FINAL EXAMS (2nd @ 8:45am, 4th @ 10:25am)	FINAL EXAMS (6th @ 8:45am, 5th @ 10:25am)	NO SCHOOL -- Teacher Institute Day	WINTER BREAK
HMWK	STUDY!!!!	STUDY!!!!	No Additional Homework	No Additional Homework	No Additional Homework

Week 17	8-Jan	9-Jan	10-Jan	11-Jan	12-Jan
Lesson	Go Over Final Exam/AP Practice Exam	6.5 Indefinite Integral	6.5 Indefinite Integral	6.3 Fundamental Theorem of Calculus	6.3 Fundamental Theorem of Calculus Quiz 6.1, 6.2 \& 6.4
HMWK	$\begin{gathered} \text { HW7--p. } 432 \text { \#1,2, } \\ 3,4,11, \text { p. } 437 \text { AP } \\ \text { Practice \#5,14 } \end{gathered}$	$\begin{gathered} \text { HW8--p. } 449 \text { \#9, } \\ \text { 10,11,12,13, p. } 453 \\ \text { AP Practice \#1 } \end{gathered}$	HW9--AP M/C \& FRQ Questions Handout	HW10--p. 420 \#19, 22,27,29,35,37 (check all answers with Calculator) Study for Quiz 6.1, 6.2 \& 6.4	$\begin{gathered} \text { HW11--p. } 420 \text { \#23, } \\ 26,28,31,33,36 \\ \text { (check all answers } \\ \text { with Calculator) } \end{gathered}$

Calculus AB Schedule--Unit 5 (Chapter 6) The Definite Integral

	Monday	Tuesday	Wednesday	Thursday	Friday
Week 18	15-Jan	16-Jan	17-Jan	18-Jan	19-Jan
Lesson	NO SCHOOL -M.L. King, Jr B-day	LATE START 6.5 Method of Substitution	6.5 Method of Substitution	6.5 Method of Substitution	6.5 Method of Substitution Quiz 6.5 \& 6.3
HMWK	No Additional Homework	HW12--p. 449 \#21-27,49 January IML Math Contest after school	$\begin{gathered} \text { HW13--p. } 449 \text { \#29, } \\ \text { 30,31,37,40,53, } \\ \text { p.453 AP Practice } \\ \# 6,7,13 \end{gathered}$	HW14--p.450 \#63b,71,73,79,96, p.453 AP Practice \#4,8 (check all answers with Calculator) Study for Quiz 6.5 $\& 6.3$	HW15--p. 450 \#62b,75,130, 132ab (check all answers with Calculator), Calculator p. 450 \#95

Week 19	22-Jan	23-Jan	24-Jan	25-Jan	26-Jan
Lesson	6.4 MVT for Integrals \& Average Value	LATE START 6.3 Fundamental Theorem of Calculus	6.3 Fundamental Theorem of Calculus	6.11 Trapezoid Sums	6.11 Trapezoid Sums
HMWK	$\begin{gathered} \text { HW16--p. } 434 \text { \#71, } \\ \text { 81b, p. } 437 \mathrm{AP} \\ \text { Practice \#2, p. } 451 \\ \text { \#101, p. } 454 \mathrm{AP} \\ \text { Practice \#9, } \\ \text { Calculator p. } 434 \\ \# 98 \end{gathered}$	HW17--p. 420 \#5, 7,11,15,17, p. 423 AP Practice \#6,7	HW18--p. 420 \#13, 18, p. 424 AP Practice \#9,10,12, Calculator p. 421 \#63ab, p. 424 AP Practice \#11	HW19--p. 514 \#3, Calculator p. 515 \#9,25c,26c,30a	$\begin{aligned} & \text { HW20--p. } 516 \\ & \text { \#31,32, AP } \\ & \text { Practice \#1-4 } \end{aligned}$

Week 20	29-Jan	30-Jan	31-Jan	1-Feb
Lesson	Unit 5 Review (Book Chapter 6)	LATE START Unit 5 Review (Book Chapter 6)	Unit 5 TEST	AP Activity: Unit 5 (Book Chapter 6)
HMWK	HW21--p. 458 \#9,15,19,23,32,41, 44, AP Practice \#8,9,12, p. 536 AP Review \#3,5	STUDY for TEST!!!	No Additional Homework	AP Activity: Unit 5 due Feb 8

Calculus AB Schedule--Unit 5 (Chapter 6) The Definite Integral

	Monday	Tuesday	Wednesday	Thursday	Friday

UNIT 5: Definite Integrals

CHA-4

Definite integrals allow us to solve problems involving the accumulation of change over an interval.

LEARNING OBJECTIVE

CHA-4.A

Interpret the meaning of areas associated with the graph of a rate of change in context.

ESSENTIAL KNOWLEDGE

CHA-4.A. 1

The area of the region between the graph of a rate of change function and the x axis gives the accumulation of change.

CHA-4.A. 2

In some cases, accumulation of change can be evaluated by using geometry.

CHA-4.A.3

If a rate of change is positive (negative) over an interval, then the accumulated change is positive (negative)

CHA-4.A. 4

The unit for the area of a region defined by rate of change is the unit for the rate of change multiplied by the unit for the independent variable.

FUN-5

The Fundamental Theorem of Calculus connects differentiation and integration.

LEARNING OBJECTIVE

FUN-5.A

Represent accumulation functions using definite integrals.

FUN-5.A

Represent accumulation functions using definite integrals.

ESSENTIAL KNOWLEDGE

FUN-5.A. 1

The definite integral can be used to define new functions.

FUN-5.A. 2

If f is a continuous function on an interval
containing a, then $\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)$, where
x is in the interval.

FUN-5.A. 3

Graphical, numerical, analytical, and verbal representations of a function f provide information about the function g defined as $g(x)=\int_{a}^{x} f(t) d t$.

LIM. 5

Definite integrals can be approximated using geometric and numerical methods.

LEARNING OBJECTIVE

LIM-5.A

Approximate a definite
integral using geometric and numerical methods.

LIM-5.B

Interpret the limiting case of the Riemann sum as a definite integral.

LIM-5.C

Represent the limiting case of the Riemann sum as a definite integral.

ESSENTIAL KNOWLEDGE

LIM-5.A. 1

Definite integrals can be approximated for functions that are represented graphically, numerically, analytically, and verbally.

LIM-5.A. 2

Definite integrals can be approximated using a left Riemann sum, a right Riemann sum, a midpoint Riemann sum, or a trapezoidal sum approximations can be computed using either uniform or nonuniform partitions.

LIM-5.A. 3

Definite integrals can be approximated using numerical methods, with or without technology

LIM-5.A.4

Depending on the behavior of a function, it may be possible to determine whether an approximation for a definite integral is an underestimate or overestimate for the value of the definite integral.

LIM-5.B. 1

The limit of an approximating Riemann sum can be interpreted as a definite integral.

LIM-5.B. 2

A Riemann sum, which requires a partition of an interval I, is the sum of products, each of which is the value of the function at a point in a subinterval multiplied by the length of that subinterval of the partition.

LIM-5.C. 1

The definite integral of a continuous function f over the interval $[a, b]$, denoted by $\int_{a}^{b} f(x) d x$. is the limit of Riemann sums as the widths of the subintervals approach 0 . That is,
$\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$, where n is
the number of subintervals, Δx_{i} is the width of the i th subinterval, and x_{i}^{*} is a value in the i th subinterval.

LIM-5.c. 2

A definite integral can be translated into
the limit of a related Riemann sum, and the limit of a Riemann sum can be written as a definite integral.

Calculus AB Schedule--Unit 5 (Chapter 6) The Definite Integral

	Monday	Tuesday	Wednesday	Thursday	Friday

FUN-6
Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.

LEARNING OBJECTIVE
FUN-6.A
Calculate a definite integral using areas and properties of definite integrals.

FUN-6. B

Evaluate definite integrals analytically using the Fundamental Theorem of Calculus.

FUN-6.C

Determine antiderivatives
of functions and indefinite integrals, using knowledge of derivatives.

FUN-6.D

For integrands
requiring substitution
or rearrangements into equivalent forms:
(a) Determine indefinite integrals.
(b) Evaluate definite integrals.

FUN-6.D

For integrands requiring substitution or rearrangements into equivalent forms:
(a) Determine indefinite integrals.
(b) Evaluate definite integrals.

ESSENTIAL KNOWLEDGE

 FUN-6.A. 1In some cases, a definite integral can be evaluated by using geometry and the
connection between the definite integral and area.

FUN-6.A. 2

Properties of definite integrals include the integral of a constant times a function, the integral of the sum of two functions, reversal of limits of integration, and the integral of a function over adjacent intervals.

FUN-6.A. 3

The definition of the definite integral may be extended to functions with removable or jump discontinuities.

FUN-6.B. 1

An antiderivative of a function f is a function g whose derivative is f

FUN-6.B. 2

If a function f is continuous on an interval containing a, the function defined by
$F(x)=\int_{a}^{x} f(t) d t$ is an antiderivative of f for x in the interval.
FUN-6.B. 3
If f is continuous on the interval $[a, b]$ and F is an antiderivative of f, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$. FUN-6.C. 1
$\int f(x) d x$ is an indefinite integral of the function
f and can be expressed as $\int f(x) d x=F(x)+C$, where $F^{\prime}(x)=f(x)$ and C is any constant.

FUN-6.C. 2

Differentiation rules provide the foundation for finding antiderivatives.

FUN-6.C. 3

Many functions do not have closed-form antiderivatives.
FUN-6.D. 1
Substitution of variables is a technique for finding antiderivatives.

FUN-6.D. 2

For a definite integral, substitution of variables requires corresponding changes to the limits of integration.

FUN-6.D. 3

Techniques for finding antiderivatives include rearrangements into equivalent forms, such as long division and completing the square.

