School Year 2023/2024 Ms. Kane/Mr. Gierut

Calculus AB Schedule--Unit 5 (Chapter 6) The Definite Integral

	Monday	Tuesday	Wednesday	Thursday	Friday
Week 15	-	-	6-Dec	7-Dec	8-Dec
Lesson			6.1 Area, 6.11 Midpoint Rule	6.1 Area, 6.11 Midpoint Rule	6.1 Area, 6.11 Midpoint Rule
HMWK			HW1p.396 #2,3, (make tables of values) 5ab, p.411 AP Practice #1, 10a, p.514 #5, Calculator p.515 #26ab,27	HW2p.410 #63, 66, p.411 #9a, p.461 AP Practice #10, p.514 #6, Calculator p.515 #28	HW3p.410 #64, AP Practice #5, p.516 AP Practice #5, Calculator p.516 #35c
Week 16	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec
Lesson	6.2 The Definite Integral	LATE START 6.2 The Definite Integral	6.4 Properties of the Definite Integral	Practice for AP Practice Exam	Practice for AP Practice Exam / Calculus Holiday Songs
HMWK	HW4 p.408 #13, 14,17,27-30, p.412 AP Practice #10bd	HW5Definite Integrals HW Handout December IML Math Contest after school?	HW6p.408 #15, 16, p.432 #9, p.437 AP Practice #1,3,11, p.460 AP Practice #14bc	STUDY!!!!	STUDY!!!!
Week 17	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec
Lesson	FINAL EXAMS (1st @ 8:45am, 3rd @10:25am, Zero @ 12pm)	FINAL EXAMS (2nd @ 8:45am, 4th @ 10:25am)	FINAL EXAMS (6th @ 8:45am, 5th @ 10:25am)	NO SCHOOL Teacher Institute Day	WINTER BREAK
HMWK	STUDY!!!!	STUDY!!!!	No Additional Homework	No Additional Homework	No Additional Homework
Week 17	8-Jan	9-Jan	10-Jan	11-Jan	12-Jan
Lesson	Go Over Final Exam/AP Practice Exam	6.5 Indefinite Integral	6.5 Indefinite Integral	6.3 Fundamental Theorem of Calculus	6.3 Fundamental Theorem of Calculus Quiz 6.1, 6.2 & 6.4
HMWK	HW7 p.432 #1,2, 3,4,11, p.437 AP Practice #5,14	HW8 p.449 #9, 10,11,12,13, p.453 AP Practice #1	HW9 AP M/C & FRQ Questions Handout	HW10p.420 #19, 22,27,29,35,37 (check all answers with Calculator) Study for Quiz 6.1, 6.2 & 6.4	HW11p.420 #23, 26,28,31,33,36 (check all answers with Calculator)

School Year 2023/2024 Ms. Kane/Mr. Gierut

Calculus AB Schedule--Unit 5 (Chapter 6) The Definite Integral

	Monday	Tuesday	Wednesday	Thursday	Friday
Week 18	15-Jan	16-Jan	17-Jan	18-Jan	19-Jan
Lesson	NO SCHOOL M.L. King, Jr B-day	LATE START 6.5 Method of Substitution	6.5 Method of Substitution	6.5 Method of Substitution	6.5 Method of Substitution Quiz 6.5 & 6.3
HMWK	No Additional Homework	HW12 p.449 #21-27,49 January IML Math Contest after school	HW13p.449 #29, 30,31,37,40,53, p.453 AP Practice #6,7,13	HW14p.450 #63b,71,73,79,96, p.453 AP Practice #4,8 (check all answers with Calculator) Study for Quiz 6.5 & 6.3	HW15p.450 #62b,75,130, 132ab (check all answers with Calculator), Calculator p.450 #95
Week 19	22-Jan	23-Jan	24-Jan	25-Jan	26-Jan
Lesson	6.4 MVT for Integrals & Average Value	LATE START 6.3 Fundamental Theorem of Calculus	6.3 Fundamental Theorem of Calculus	6.11 Trapezoid Sums	6.11 Trapezoid Sums
HMWK	HW16p.434 #71, 81b, p.437 AP Practice #2, p.451 #101, p.454 AP Practice #9, Calculator p.434 #98	HW17 p.420 #5, 7,11,15,17, p.423 AP Practice #6,7	HW18p.420 #13, 18, p.424 AP Practice #9,10,12, Calculator p.421 #63ab, p.424 AP Practice #11	HW19 p.514 #3, Calculator p.515 #9,25c,26c,30a	HW20 p.516 #31,32, AP Practice #1-4
Week 20	29-Jan	30-Jan	31-Jan	1-Feb	
Lesson	Unit 5 Review (Book Chapter 6)	LATE START Unit 5 Review (Book Chapter 6)	Unit 5 TEST	AP Activity: Unit 5 (Book Chapter 6)	
HMWK	HW21p.458 #9,15,19,23,32,41, 44, AP Practice #8,9,12, p.536 AP Review #3,5	STUDY for TEST!!!	No Additional Homework	AP Activity: Unit 5 due Feb 8	

Calculus AB Schedule--Unit 5 (Chapter 6) The Definite Integral

Monday Tuesday Wednesday Thursday Friday

UNIT 5: Definite Integrals

CHA-4

Definite integrals allow us to solve problems involving the accumulation of change over an interval.

LEARNING OBJECTIVE

CHA-4.A

Interpret the meaning of areas associated with the graph of a rate of change in context.

ESSENTIAL KNOWLEDGE

CHA-4.A.1

The area of the region between the graph of a rate of change function and the \boldsymbol{x} axis gives the accumulation of change.

CHA-4.A.2

In some cases, accumulation of change can be evaluated by using geometry.

CHA-4.A.3

If a rate of change is positive (negative) over an interval, then the accumulated change is positive (negative).

CHA-4.A.4

The unit for the area of a region defined by rate of change is the unit for the rate of change multiplied by the unit for the independent variable.

FUN-5

The Fundamental Theorem of Calculus connects differentiation and integration.

LEARNING OBJECTIVE

FUN-5.A

Represent accumulation functions using definite integrals.

F1131 F A

Represent accumulation functions using definite integrals.

ESSENTIAL KNOWLEDGE

FUN-5.A.

The definite integral can be used to define new functions

FUN-5.A.2

If f is a continuous function on an interval

containing a, then $\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$, where

x is in the interval.

FUN-5.A.3

Graphical, numerical, analytical, and verbal representations of a function f provide information about the function g defined as $g(x) = \int_{-x}^{x} f(t) dt$.

LIM-5

Definite integrals can be approximated using geometric and numerical methods.

LEARNING OBJECTIVE

LIM-5.A

Approximate a definite integral using geometric and numerical methods.

Interpret the limiting case

of the Riemann sum as a

Represent the limiting case

of the Riemann sum as a

definite integral.

definite integral.

LIM-5.C

ESSENTIAL KNOWLEDGE

LIM-5.A.1

Definite integrals can be approximated for functions that are represented graphically, numerically, analytically, and verbally.

LIM-5.A.2

Definite integrals can be approximated using a left Riemann sum, a right Riemann sum, a midpoint Riemann sum, or a trapezoidal sum; approximations can be computed using either uniform or nonuniform partitions.

LIM-5.A.3

Definite integrals can be approximated using numerical methods, with or without technology.

LIM-5.A.4

Depending on the behavior of a function, it may be possible to determine whether an approximation for a definite integral is an underestimate or overestimate for the value of the definite integral.

IM-5.B.1

The limit of an approximating Riemann sum can be interpreted as a definite integral.

LIM-5.B.2

A Riemann sum, which requires a partition of an interval I, is the sum of products, each of which is the value of the function at a point in a subinterval multiplied by the length of that subinterval of the partition.

LIM-5.C.1

The definite integral of a continuous function f over the interval [a,b], denoted by $\int_a^b f(x)dx$, is the limit of Riemann sums as the widths of the subintervals approach 0. That is,

$$\int_a^b f(x)dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i, \text{ where } n \text{ is}$$

the number of subintervals, Δx_i is the width of the ith subinterval, and x_i^* is a value in the ith subinterval.

LIM-5.C.2

A definite integral can be translated into the limit of a related Riemann sum, and the limit of a Riemann sum can be written as a definite integral. School Year 2023/2024 Ms. Kane/Mr. Gierut

Calculus AB Schedule--Unit 5 (Chapter 6) The Definite Integral

NA1	Torrandare	\A/ll	Thomasia	Ent dans	-
Monday	Tuesday	Wednesday	Thursday	Friday	

FUN-6

Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.

LEARNING OBJECTIVE

FUN-6.A

Calculate a definite integral using areas and properties of definite integrals.

FUN-6.B

Evaluate definite integrals analytically using the Fundamental Theorem of Calculus.

FUN-6.C

Determine antiderivatives of functions and indefinite integrals, using knowledge of derivatives.

FUN-6.0

For integrands requiring substitution or rearrangements into equivalent forms:

- (a) Determine indefinite integrals.
- (b) Evaluate definite integrals.

FUN-6.D

For integrands requiring substitution or rearrangements into equivalent forms:

- (a) Determine indefinite integrals.
- (b) Evaluate definite integrals.

ESSENTIAL KNOWLEDGE

FUN-6.A.

In some cases, a definite integral can be evaluated by using geometry and the connection between the definite integral and area.

EIIN-6 A 2

Properties of definite integrals include the integral of a constant times a function, the integral of the sum of two functions, reversal of limits of integration, and the integral of a function over adjacent intervals.

EUN-S A

The definition of the definite integral may be extended to functions with removable or jump discontinuities.

FUN-6.B.1

An antiderivative of a function f is a function g whose derivative is f.

CIIN-6 R 2

If a function f is continuous on an interval containing a, the function defined by $F(x) = \int_a^x f(t) dt$ is an antiderivative of f for x in the interval.

FUN-6.B.:

If f is continuous on the interval [a, b] and F is an antiderivative of f, then $\int_a^b f(x) dx = F(b) - F(a)$.

FUN-6.C.1

 $\int f(x)dx$ is an indefinite integral of the function f and can be expressed as $\int f(x)dx = F(x) + C$, where F'(x) = f(x) and C is any constant.

FUN-6.C.2

Differentiation rules provide the foundation for finding antiderivatives.

FUN-6.C.3

Many functions do not have closed-form antiderivatives.

FUN-6.D.

Substitution of variables is a technique for finding antiderivatives.

FUN-6.D.2

For a definite integral, substitution of variables requires corresponding changes to the limits of integration.

FUN-6.D.3

Techniques for finding antiderivatives include rearrangements into equivalent forms, such as long division and completing the square.