\qquad

1. Let f be a function such that $\int f(x) e^{x} d x=f(x) e^{x}-\int 4 x^{3} e^{x} d x$. Find $f(x)$.
2. If $f(0)=6, f(1)=3, g(0)=1, g(1)=-1$, and $\int_{0}^{1} f^{\prime}(x) g(x) d x=4$, find $\int_{0}^{1} f(x) g^{\prime}(x) d x$
3. Let f be the function defined for $x>0$, with $f(e)=2$ and f^{\prime}, the first derivative of f, given by $f^{\prime}(x)=x^{2} \ln x$. Find $f(x)$.
4. Concert tickets went on sale at noon $(t=0)$ and were sold out within 9 hours. The number of people waiting in line to purchase tickets at time t is modeled by a twice-differentiable function, $L(t)=-0.4 x^{4}+6.4 x^{3}-36.4 x^{2}+74.8 x+118$, for $0 \leq t \leq 9$. Find the average number of people waiting in line during the first 5 hours that tickets were on sale.
5. Evaluate: $\frac{d}{d x}\left(\int_{0}^{x^{2}} \cos \left(t^{3}\right)\right) d t$
6. If $f^{\prime}(x)=\frac{10 x}{x^{2}+x-6}$, find $f(x)$.
