Some Practice Problems for Some Concepts in Unit 6

1. Using Euler's Method, approximate the particular solution to y(0.3) of the differential equation $\frac{dy}{dx} = x + e^{-y}$ passing through (0,1) using 3 increments of equal size.

2. Solve the differential equation $\frac{dy}{dx} = \frac{x}{y} \sin x$ for y(0) = 4.

3. Find and sketch the particular solution to $\frac{dy}{dx} = \frac{\ln x}{x}$ through the point (1, -2).

4. Sketch a slope field for the differential equation, $\frac{dy}{dx} = 2x + y$ for the indicated 6 points.

5. Match the differential equation to the appropriate slope field. (Don't forget to justify your answers)

(1)
$$\frac{dy}{dx} = x$$

(2)
$$\frac{dy}{dx} = -\frac{x}{y}$$

(3)
$$\frac{dy}{dx} = 4 - y$$

(4)
$$\frac{dy}{dx} = 0.25x(4 - y)$$

6. Consider the differential equation $\frac{dy}{dx} = 3x + 2y + 1$. Let y = f(x) be a particular solution to the differential equation with the initial condition g(0) = k, where k is a constant. Euler's method, starting at x = 0 with a step size of 1, gives the approximation $g(2) \approx 0$. Find the value of k.