Some Practice Problems for Some Concepts in Unit 6

1. Using Euler's Method, approximate the particular solution to $y(0.3)$ of the differential equation $\frac{d y}{d x}=x+e^{-y}$ passing through $(0,1)$ using 3 increments of equal size.
2. Solve the differential equation $\frac{d y}{d x}=\frac{x}{y} \sin x$ for $y(0)=4$.
3. Find and sketch the particular solution to $\frac{d y}{d x}=\frac{\ln x}{x}$ through the point $(1,-2)$.

4. Sketch a slope field for the differential equation, $\frac{d y}{d x}=2 x+y$ for the indicated 6 points.

5. Match the differential equation to the appropriate slope field. (Don't forget to justify your answers)
(1) $\frac{d y}{d x}=x$
(2) $\frac{d y}{d x}=-\frac{x}{y}$
(3) $\frac{d y}{d x}=4-y$
(4) $\frac{d y}{d x}=0.25 x(4-y)$
A.

B.

C.

D.

6. Consider the differential equation $\frac{d y}{d x}=3 x+2 y+1$. Let $y=f(x)$ be a particular solution to the differential equation with the initial condition $g(0)=k$, where k is a constant. Euler's method, starting at $x=0$ with a step size of 1 , gives the approximation $g(2) \approx 0$. Find the value of k.
