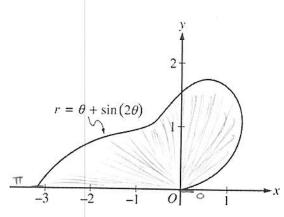
42

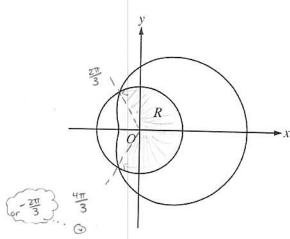
2005 AP° CALCULUS BC FREE-RESPONSE QUESTIONS



- 2. The curve above is drawn in the xy-plane and is described by the equation in polar coordinates $r = \theta + \sin(2\theta)$ for $0 \le \theta \le \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{dr}{d\theta} = 1 + 2\cos(2\theta)$.
 - (a) Find the area bounded by the curve and the x-axis. $\Theta = 0 + 0 = 1$

UN

2007 AP® CALCULUS BC FREE-RESPONSE QUESTIONS



- 3. The graphs of the polar curves r=2 and $r=3+2\cos\theta$ are shown in the figure above. The curves intersect when $\theta=\frac{2\pi}{3}$ and $\theta=\frac{4\pi}{3}$.
 - (a) Let R be the region that is inside the graph of r=2 and also inside the graph of $r=3+2\cos\theta$, as shaded in the figure above. Find the area of R.

Area of
$$R$$
 = Area of Curcle from θ :

$$\theta = -\frac{27}{3} + \frac{27}{3} + \frac{27}{3}$$

$$= 2\frac{1}{3} \text{ of the endure curcle} + \frac{1}{2} \int_{-\frac{27}{3}}^{47} (3 + 2\cos\theta)^2 d\theta$$

$$= \frac{2}{3} \pi(2)^2 + \frac{1}{2} \int_{-\frac{27}{3}}^{47} (3 + 2\cos\theta)^2 d\theta = 10.370$$

2006 AP° CALCULUS BC FREE-RESPONSE QUESTIONS (Form B)

2. An object moving along a curve in the xy-plane is at position (x(t), y(t)) at time t, where

$$\frac{dx}{dt} = \tan(e^{-t})$$
 and $\frac{dy}{dt} = \sec(e^{-t})$

for $t \ge 0$. At time t = 1, the object is at position (2, -3).

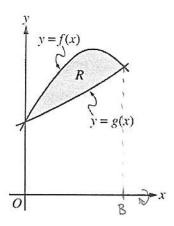
- (b) Find the acceleration vector and the speed of the object at time t = 1.
- (c) Find the total distance traveled by the object over the time interval $1 \le t \le 2$.

b)
$$a(t) = \langle x''(t), y''(t) \rangle$$

$$a(1) = \langle \frac{d}{dt}(tane^{-t})|_{t=1}, \frac{d}{dt}(scce^{-t})|_{t=1} \rangle = [\langle -.423, -.152 \rangle]$$

$$speed = |v(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}$$

$$= |v(t)| = \sqrt{(tane^{-t})^2 + (sece^{-t})^2} = [1.139]$$
c) Distance = $\int_{-\infty}^{\infty} \sqrt{(x'(t))^2 + (y'(t))^2} dt = [1.059]$



- 1. Let f and g be the functions given by $f(x) = 1 + \sin(2x)$ and $g(x) = e^{x/2}$. Let R be the shaded region in the first quadrant enclosed by the graphs of f and g as shown in the figure above.
 - (a) Find the area of R.
 - (b) Find the volume of the solid generated when R is revolved about the x-axis.
 - (c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles with diameters extending from y = f(x) to y = g(x). Find the volume of this solid.

$$B = 1.136$$
a) Area of $R = \int_{0}^{B} (f(x) - g(x)) dx$

$$= \int_{0}^{B} (1 + \sin 2x - e^{x/2}) dx = 0.429$$

6) Volume =
$$\pi \int_{0}^{8} ((1+\sin 2x)^{2} - (e^{x/2})^{2}) dx$$

= $[4.267]$

Volume =
$$\int_{0}^{8} \frac{1}{2} \pi \left(\frac{f(x) - g(x)}{2} \right)^{2} dx$$

$$= \left[0.078 \right]$$

diameter = F(x)-g(x)

Area Semicircle = \(\frac{1}{2} \)

radius = \(\frac{\(\text{f(x)} - \text{g(x)}}{2} \)