CONTINUITY

The idea of continuity: A function is continuous if you can draw the entire function without lifting your pencil from the paper.

Types of Discontinuities

Removable Discontinuity Hole in the graph

Non-Removable Discontinuity Vertical Asymptote

Non-Removable Discontinuity Jump

Definition of Continuity

A function is continuous at a point $x=c$ if $\lim _{x \rightarrow c} f(x)=f(c)$.
To prove a function is continuous at $x=c$, show:
(1) $f(c)$ exists
(2) $\lim _{x \rightarrow c} f(x)$ exists
(3) $f(c)=\lim _{x \rightarrow c} f(x)$

Example 1: Given the graph of the function f to the right,
a) identify where f is discontinuous and explain why.

b) identify the interval(s) on which f is continuous.

Example 2: For what values of x is $f(x)$ continuous?

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-3 x, & x \leq 2 \\
3, & 2<x<4 \\
-1, & x=4 \\
7-x, & x>4
\end{array}\right.
$$

Example 3: Is $g(x)$ continuous for all values of x ?

$$
g(x)=\frac{x+3}{x-2}
$$

Example 4: Is $h(x)$ continuous for all values of x ?

$$
h(x)=\frac{x^{2}-1}{x+1}
$$

