CONTINUITY

The idea of continuity: A function is continuous if you can draw the entire function without lifting your pencil from the paper.

Types of Discontinuities

Non-Removable Discontinuity Vertical Asymptote

Non-Removable Discontinuity Jump

Definition of Continuity

A function is continuous at a point x = c if $\lim_{x \to c} f(x) = f(c)$.

To prove a function is continuous at x = c, show:

- $\bigcirc f(c)$ exists
- $\Im f(c) = \lim_{x \to c} f(x)$

Example 1: Given the graph of the function *f* to the right,

a) identify where f is discontinuous and explain why.

b) identify the interval(s) on which f is continuous.

Example 2: For what values of x is f(x) continuous?

$$f(x) = \begin{cases} x^2 - 3x, & x \le 2\\ 3, & 2 < x < 4\\ -1, & x = 4\\ 7 - x, & x > 4 \end{cases}$$

Example 3: Is g(x) continuous for all values of x? $g(x) = \frac{x+3}{x-2}$

Example 4: Is h(x) continuous for all values of x? $h(x) = \frac{x^2 - 1}{x + 1}$