

 \blacksquare Find the equation of the polar graph below.

$$r = -2 - \frac{3}{2}\theta$$

 \boxtimes Find the equation of the polar graph below.

$$r = 7\cos(2\theta)$$

Find the point(s) of intersection of the graphs r = 1 and $r = 2 \cos \theta$.

$$\left(1,\frac{\pi}{3}\right)$$
 and $\left(1,\frac{5\pi}{3}\right)$

Find the point(s) of intersection of the following pairs of curves.

$$r = 2$$
 and $r = 2 \cos \theta$

(2,0)

Find the point(s) of intersection of the following pairs of curves.

 $r = 2 + 2 \sin \theta$ and $r = 2 - 2 \cos \theta$

$$\left(2+\sqrt{2},\frac{3\pi}{4}\right)$$
 and $\left(2+\sqrt{2},\frac{7\pi}{4}\right)$

Find the rectangular coordinates for $\left(3, \frac{\pi}{6}\right)$

$$\left(\frac{3\sqrt{2}}{2},\frac{3}{2}\right)$$

Write the polar equation as a rectangular equation:

 $r = -3 \sec \theta$

$$x = -3$$

Write the polar equation as a rectangular equation: $r = -4\sin\theta$

$$x^2 + (y+2)^2 = 4$$

Write the equation of a line that has slope of $\frac{3}{2}$ and intersects the graph of $r = 3 - 2 \sin \theta$ at $\theta = \pi$.

$$y - 0 = \frac{3}{2}(x + 3)$$

Find the point(s) of intersection of the following pairs of curves: $r = \sin 2\theta$ and $r = 2 \sin \theta$.