$(0,0)$

Find the equation of the polar graph below.

$$
r=-2-\frac{3}{2} \theta
$$

Find the equation of the polar graph below.

$$
r=7 \cos (2 \theta)
$$

Find the point(s) of intersection of the graphs $r=1$ and $r=2 \cos \theta$.

$$
\left(1, \frac{\pi}{3}\right) \text { and }\left(1, \frac{5 \pi}{3}\right)
$$

Find the point(s) of intersection of the following pairs of curves.

$$
r=2 \text { and } r=2 \cos \theta
$$

$(2,0)$

Find the point(s) of intersection of the following pairs of curves.

$$
r=2+2 \sin \theta \text { and } r=2-2 \cos \theta
$$

$$
\left(2+\sqrt{2}, \frac{3 \pi}{4}\right) \text { and }\left(2+\sqrt{2}, \frac{7 \pi}{4}\right)
$$

Find the rectangular coordinates for $\left(3, \frac{\pi}{6}\right)$

$$
\left(\frac{3 \sqrt{2}}{2}, \frac{3}{2}\right)
$$

Write the polar equation as a rectangular equation:

$$
r=-3 \sec \theta
$$

$$
x=-3
$$

Write the polar equation as a rectangular equation:

$$
r=-4 \sin \theta
$$

$$
x^{2}+(y+2)^{2}=4
$$

Write the equation of a line that has slope of $\frac{3}{2}$ and intersects the graph of $r=3-2 \sin \theta$ at $\theta=\pi$.

$$
y-0=\frac{3}{2}(x+3)
$$

Find the point(s) of intersection of the following pairs of curves: $r=\sin 2 \theta$ and $r=2 \sin \theta$.

