\qquad
Self-Reflection for Studying for Test
Check off your answer to each question:

	Yes	Somewhat	No
Did you complete all HW?			
Did you correct any HW errors and complete any missing problems?			
Did you attend study groups every week?			
Did you ask questions in your study group on topics?			
Did you correct any Quiz errors?			

Rate your preparation for each of these topics on a scale of 0 to 5 , where 0 is not at all prepared and 5 is well-prepared.

If you are not well-prepared for a topic, identify what can help you prepare for the Test (i.e., your notes, homework, mathkanection, Khan Academy, or other resources)

Topic	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	What to do to be better prepared
Definition of the derivative, including the Alternate Form of the Derivative							
I can compute the derivatives of power and trigonometric functions using the limit definition of the derivative.							
Differentiability, including sketching f' I can explain the relationship between the continuity and the differentiability of a function.							
Basic rules of differentiation, including Product and Quotient Rules							
I can compute the derivatives of power and trigonometric functions using derivative rules involving sums, products, and quotients.							
I can interpret the derivative as the instantaneous rate of change of a quantity. I can find higher-order derivatives.							
Particle Motion I can describe the connection among position, velocity, and acceleration. I can use derivatives to solve problems involving velocity, speed and acceleration.							
Understand the difference between instantaneous and average rate of change I can use derivatives to describe the rate of change at a point, and compare it to average rate of change between two points.							

