Summary of Limits (Learned in PreCalculus)

What is a Limit? $\lim f(x) = L$

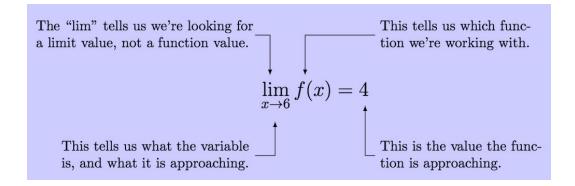
as k approaches c

What does $\lim_{x \to c} f(x) = L$ mean? As x approaches c (from either side), then f(x) becomes close to L.

- * By making x get very close to c, f(x) gets very close to L.
- As the input, x, approaches some value c, then the function, f(x), approaches the value of L.

$\lim_{x \to a} f(x) = L$ provided that these 3 conditions are true:

$$\begin{cases} i. \lim_{x \to c^{-}} f(x) \text{ exists} \\ ii. \lim_{x \to c^{+}} f(x) \text{ exists} \\ iii. \lim_{x \to c^{+}} f(x) = \lim_{x \to c^{-}} f(x) \end{cases}$$



Ways to Evaluate a Limit

Numerically – use/make a table of values

https://www.mathkanection.com/uploads/8/4/4/3/84436602/10.3.4 limits numerically guide d notes filled in 2016.pdf

Analytically – use algebra

- Replace value of c for x (if possible)
- Result is indeterminate, $\frac{0}{0}$? Then, use algebraic methods (factor & reduce, multiply by the conjugate, use trig limits, etc)

https://www.mathkanection.com/uploads/8/4/4/3/84436602/10.3.2_limits_analytically_guide d notes filled in 2016.pdf

Graphically – use a graph

https://www.mathkanection.com/uploads/8/4/4/3/84436602/10.3.3_limits_graphically_guide d notes filled in 2016.pdf

Infinite Limits and Limits at Infinity

Infinite Limit – a limit in which f(x) increases or decreases without bound as $x \to c$.

- Vertical Asymptotes (after reducing, denominator = 0)

If
$$\lim_{x \to c^-} f(x) = \infty$$
 or $-\infty$ or $\lim_{x \to c^+} f(x) = \infty$ or $-\infty$, then $f(x)$ has a vertical asymptote at $x = c$.

https://www.mathkanection.com/uploads/8/4/4/3/84436602/1.2.4_va_ha_guided_notes_filled_in_2016.pdf

Limits at Infinity – end behavior of a graph/function

– Horizontal Asymptote at
$$y = L$$
 if $\lim_{x \to \infty} f(x) = L$ or $\lim_{x \to -\infty} f(x) = L$

Conclusion

If degree of Numerator = degree of Denominator, then $\lim_{x\to\infty} f(x) = \frac{\text{coefficients of leading terms}}{\text{of Numerator/Denominator}}$ (and, Horizontal Asymptote @ y = coefficients (H)

Conclusion:

If degree of Numerator < degree of Denominator, then $\lim_{x\to\infty} f(x) = 0$ (and, Horizontal Asymptote @ y = 0

Conclusion.

If degree of Numerator \geqslant degree of Denominator, then $\lim_{x\to\infty} f(x) = +\infty$ or $-\infty$

(NO Horizontal Asymptote)

https://www.mathkanection.com/uploads/8/4/4/3/84436602/10.3.1_limits_at_infinity_guided_notes_filled_in_2016.pdf

Properties of Limits

Let c be a real number and let f and g be functions with limits that exist, then:

Sum or Difference:
$$\lim_{x \to c} (f(x) \pm g(x)) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$$

Product:
$$\lim_{x \to c} (f(x) \cdot g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$

Coefficient:
$$\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$$

Quotient:
$$\lim_{x \to c} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to c} f(x) \\ \lim_{x \to c} g(x)$$

Power or Root:
$$\lim_{x \to c} (f(x))^n = \left(\lim_{x \to c} f(x)\right)^n$$

$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$$

Composite:
$$\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right)$$