Alternating Series Error Bound

Given

$$
\sum(-1)^{n} a_{n}
$$

the remainder/error is found by looking at the first unused term

$$
\left|R_{n}(x)\right|=\left|f(x)-P_{n}(x)\right|
$$

Because the series is alternating with individual terms that decrease in value to zero, the remainder is less than or equal to the absolute value of the first unused term.

$$
\left|f(x)-P_{n}(x)\right| \leq\left|a_{n+1}\right|
$$

- Example 1:

Find the error involved in calculating the sum of the first six terms of the series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}
$$

Example 2:

. Find the error involved in calculating the sum of the first six terms of the series:
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$

- Example 3:

Estimate the error of $\sin (0.2)$ from the Taylor Polynomial of order 4.

