PreCalculus Unit 1 Review (Practice Test)

\qquad

Non-Calculator

1) Using the graph on the right, estimate the relative max and min.
2) Find the domain and range of the following:

a) $f(x)=\sqrt{x-1}+3$
b) $k(x)=\sqrt{-2 x+1}$
3) Find $(f+g)(x)$ and $(g-f)(x)$ if $f(x)=x^{3}-3 x+5$ and $g(x)=x^{2}-5 x-6$.
4) Find $(f g)(x)$ if $f(x)=(x+3)^{2}$ and $g(x)=x-3$.
5) Find $(f \circ g)(x)$ and $(g \circ f)(x)$ if $f(x)=x^{2}-7$ and $g(x)=\sqrt{x+3}$.
6) Find the inverse of $h(x)=(x-3)^{2}+9$.
7) Find the parent function that produces the graph on the right.

8) Find the function that produces the graph on the right.

9) Sketch a graph of 3 functions that are NOT continuous over the Real Numbers.
10) Sketch a graph of 3 functions that are decreasing on the interval $(-\infty, 0)$.
11) Sketch the following:
a) graphs of 3 functions that are bounded below
b) graphs of 2 bounded functions
c) a graph of a function that's NOT bounded
12) Describe the transformation of $q(x)=(x-3)^{2}-5$.

Calculator

13) Find the zeroes of $f(x)=x^{2}-5 x+3$. What is the domain and range of this function?
14) Determine a function that has zeroes @ $\frac{2}{3}, 3$, and 5 .
15) What is the end behavior in problem 14 ?
16) Determine to 3 decimal places the interval(s) on which the function in problem 14 is decreasing and increasing.
17) Perform the following transformation: Reflect $q(x)$ across the x-axis if $q(x)=(x-3)^{2}-5$. Write the new function and call it $p(x)$.
18) What is the best fit regression curve given the data on the right?

\# of minutes	3	4	5	6	8
\# of cars	8	15	24	35	63

19) Graphite Inc. makes tennis racquets. If each racquet costs $\$ 53$ to make with fixed overhead costs of $\$ 567,000$, what is the best fit regression curve?
20) Clearly identify and state the x-value(s) where the discontinuities occur for:
$f(x)=\frac{x\left(x^{2}-4\right)}{x^{3}-2 x^{2}-8 x}$
21) Tell whether each of the following functions is odd, even, or neither:
a) $f(x)=\frac{x^{3}}{4-x^{2}}$
b) $g(x)=x^{2}-3$
c) $h(x)=x^{2}-2 x-2$
