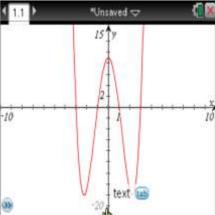
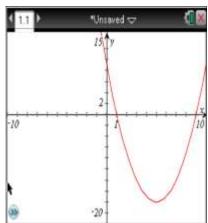

## **Non-Calculator**


Write a function that fits each graph in problems 1-3.

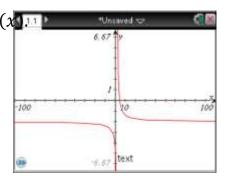

1)



2)








4) Solve the quadratic equation two different ways:  $5x^2 - 2x - 3 = 0$ 

5) Given x = 4 is a root, find the rest of the zeros for  $f(x) = x^3 + x^2 - 16x - 16$ .

6) Determine the polynomial of least degree given the zeros 3 - i and -2.

- 7) Determine how many complex zeros there are for  $g(x) = 3x^4 6x^2 + 5x 11$  and explain your reasoning.
- 8) Given the graph, determine the  $\lim_{x \to -\infty} g(x)$  and  $\lim_{x \to \infty} g(x)$



- 9) Determine the end behavior in problems 1 and 2.
- 10) Write a polynomial function of least degree in factored form with the following zeros: –2, 0, 1, and  $\frac{3}{5}$
- 11) Write a polynomial function in factored form that has a zero of 0 with multiplicity of 2, a zero of –3 with multiplicity of 3, and a zero of 1 with multiplicity of 2.

12)  $P(x) = -2x^4 + ax^3 - 3x^2 + bx - 15$ . P(x) is divisible by x - 3. P(x) has a remainder of -32 when divided by x + 1. Find a and b.

## **Calculator**

- 13) Solve for  $q: 2q^3 10q = 5$
- 14) Find the solutions of the following equation:  $c^2 + 3 = c$
- 15) Determine all complex zeros for  $w(x) = x^4 8x^2 9$ .

- 16) How many real zeros are there for  $b(x) = 2x^3 + 3x^2 + 3x + 9$ ? How many are imaginary?
- 17) Describe the end behavior of  $m(x) = -2x^3 x + 1$ .
- 18) Find the vertical and horizontal asymptotes for:

a) 
$$h(x) = \frac{x-5}{x+3}$$

b) 
$$k(x) = \frac{x+3}{x^2-5x-24}$$

b) 
$$k(x) = \frac{x+3}{x^2-5x-24}$$
 c)  $n(x) = \frac{3x}{x^2-2x-24}$ 

## **ANSWERS**

1. 
$$x^3 - 3x^2 - 6x + 8 = f(x)$$

2. 
$$g(x) = x^4 - 10x^2 + 9$$

3. 
$$b(x) = x^2 - 10x + 9$$

5. 
$$x^3 - 4x^2 - 2x + 20 = v(x)$$

9. 
$$\frac{1}{2} + \frac{i\sqrt{11}}{2}$$
,  $\frac{1}{2} - \frac{i\sqrt{11}}{2}$ 

13. 
$$\lim_{x\to-\infty} m(x) = \infty$$
,  $\lim_{x\to\infty} m(x) = -\infty$