Non Calculator

1) Evaluate: $-7 \log 10^{3}-3$
2) Evaluate: $\log _{17} 17^{9} / 14$
3) Solve for $m: \log _{\frac{1}{5}} \sqrt[3]{25}{ }^{5}=m$
4) Solve for $q: \frac{1}{16}=2^{q-3}$
5) Condense the expression: $2[5 \log (x+2)+\log x]-\log (x+4)$
6) Condense: $2 \log _{3} y+\log _{3} z-\frac{1}{3} \log _{3} x$
7) Solve for $w: \log _{5}(2 w-3)=2$
8) Solve: $\ln 15-\ln x=\ln 3$
9) Solve for a : $-4=\log _{a} \frac{1}{16}$
10) Solve: $\frac{e^{x}-4 e^{-x}}{3}=1$
11) Solve: $\log (x-6)^{2}=4$
12) Find the Domain, Range, $X \& Y$ Intercepts, and Asymptotes of:

$$
f(x)=-1+\log _{5}(x+3)
$$

Graph the function. Label all parts

13) Solve for $x: \ln (x+4)+\ln (x-3)=2 \ln 3$
14) Find the Domain \& Range of: $f(x)=e^{x}+7$
15) Identify the domain, range, $x \& y$ intercepts, and any asymptotes for $3^{x+2}-1$
16) The \# of bacteria in a petri dish after " t " hours is $B=100 e^{k t}$ where $t=0$ represents the time 12 pm . At 6 am the \# of bacteria was 42 .
a) Find " k "
b) Using " k ", find the \# of bacteria at 8 pm .
17) The population of Wellsville can be represented by $P=1500 e^{k t}, \mathrm{t}=0$ is 2010. In 1990, the population was 1400 . Find k and use this to predict the population in 2020.
18) You invest $\$ 1300$ at Peter Venkman's savings and loan at 8% interest compounded continuously. How long will it take for the balance to double?

